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The method of probability cellular automaton (PCA) has been used to simulate turbulent stirring, molecular
diffusion, and the reactions of the stochastic Oregonator in each cell of the automaton and to model the
bifurcation of oscillation frequency multiplication discovered earlier in the Belousov-Zhabotinsky reaction
in water-in-oil Aerosol OT microemulsion. At large constants of mass exchange between the adjacent PCA
cells (kex), the system demonstrates oscillations whose shape and period (T∞) are fully identical with those
obtained from the solution of the ordinary differential equations. Whenkex decreases, the periodT shortens
and reaches the limitTm at kex e kcr. The smaller the volumeVc assigned to a PCA cell and the slower the
system’s approach to the critical concentration of the inhibitor [Br-]cr, the higher the ratioT∞/Tm. The
stochastisity of microoscillators is the source of new frequencies.

1. Introduction

The investigation of the Belousov-Zhabotinsky (BZ) reac-
tion1 occurring in water nanodroplets of the water-in-oil AOT
microemulsion in organic media (AOT) sodium 1,4-bis(2-
ethylhexyl)sulfosuccinate)2 opens new possibilities for studying
the effect of concentration fluctuations on nonlinear chemical
reactions because the amplitude of fluctuations in micro- and
nanovolumes (represented here by water nanodroplets of the
AOT microemulsion) becomes considerably larger. From the
physical point of view, water-in-oil AOT microemulsion is a
multitude of water nanodroplets surrounded by a monolayer of
AOT molecules whose long hydrophobic tails are directed to
an organic solvent while the polar headgroups are directed
toward the water core of a micelle.3 The size of a micelle (a
micelle is a water core+ a wall made of surfactant molecules)
is independent of the concentration of a micelle in the micro-
emulsion and is determined by the ratio (ω) of the molar
concentrations of water and AOT.4

The radius of the micellar water core (Rw) is estimated
approximately as5,6

The concentration of micelles (Cm) is proportional to the
volume fraction of the aqueous pseudophase (φw)

whereVm is the volume of the micellar water core,Vm ) 4πRw3/
3, NA is the Avogadro number, and

whereVw is the volume of the aqueous phase which should be
added to the volumeVoil of the AOT solution in organic solvent
to prepare the AOT microemulsion.
WhenCm exceeds some critical concentration, the micelles

start forming clusters, which at rather highφw become percola-

tion.7,8 This is confirmed by the electrooptic Kerr-effect and
electric conductivity measurements (the conductivity, for ex-
ample, displays percolation transition, changing over many
orders of magnitude). Despite a relatively large size of
percolation clusters, the microemulsion remains optically trans-
parent until the valueφw reaches the cloud point (φw = 0.5-
1), beyond which phase separation into two phases occurs.
Regrettably, the detailed structure and dynamics of AOT
microemulsion loaded with concentrated sulfuric (or other) acid
(0.1-0.6 M) where the BZ reaction runs is not known.
Therefore we shall base this study on the structure and dynamics
of an AOT microemulsion where the water nanodroplets are
loaded with low concentrations (<0.01 M) of some substances
at neutral pH.
According to these considerations, mass exchange between

water nanodroplets of a dilute microemulsion occurs as a result
of fusion-fission of the micelles.5 On average, each 100th or
1000th collision of the micelles leads to fusion, and the
bimolecular constant of the mass exchange rate is estimated as
1× 107 M-1 s-1.4,5 It is suggested that as a result of the fusion
of two micellar water cores their content is mixed completely,
after which the micelles are separated. In micellar clusters, the
micelles keep their closed structure,9 and the constant of a
particle jump (walk frequency) between micelles of the same
cluster (intracluster displacement) is estimated as (2-4)× 105

s-1.10 Mass exchange between clusters is a very slow process,
by 2-3 orders slower than the rate of mass exchange between
separate micelles. All reagents and most intermediates of the
BZ reaction are water soluble. Thus, the AOT-BZ reaction may
be considered to run mostly in water nanodroplets of AOT
microemulsion.
While studying the ferroin-catalyzed AOT-BZ reaction, we

discovered some new effects. Among them were the depen-
dence of oscillation area in phase space on the size and
concentration of water nanodroplets,11 extraordinary high pho-
tosensitivity of the AOT-BZ reaction,12 the square dependence
of the rate of autocatalytic growth in [HBrO2] and the oxidized
form of the catalyst, [ferriin], on [NaBrO3],13 and a new
bifurcation14 called by us the frequency-multiplying bifurcation.
This bifurcation, displayed as a spontaneous multiplication of
oscillation frequency by 2, 2.5, 3, or 4 and as a simultaneous
sharp decrease in oscillation amplitude, occurs only in micro-X Abstract published inAdVance ACS Abstracts,August 15, 1997.

ω ) [H2O]/[AOT] (1)

Rw (in nm)= 0.175ω (2)

Cm ) φw/(VmNA) (3)

φw ) Vw/(Voil + Vw) (4)
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emulsions with a high volume fraction of the aqueous
pseudophaseφw (whenφw g 0.05). At such values ofφw in
the AOT microemulsion, the percolation clusters are formed,7,15

and the viscosity of microemulsion sharply increases, reaching
10 cP and more.16 We suggested14 that the clusters formed in
microemulsion and loaded with the reagents of the BZ reaction
may be regarded as the stochastic microoscillators (MO), i.e.,
the oscillators whose dynamics are considerably affected by the
smallness of the amount of particles in microvolume (MV), this
fact being expressed both in the enhancement of inner fluctua-
tions and in the probability character of chemical reactions
running in MVs. We also suggested that the frequency-
multiplying bifurcation is connected with the specific interaction
in the assembly of diffusionally coupled stochastic MOs.
A great number of articles is devoted to the study of coupled

oscillators (see, for instance, the review by Epstein and
Showalter17). Fewer studies deal with the interactions of chaotic
or stochastic oscillators. These studies are mostly restricted to
the consideration of two coupled oscillators.18 We are unaware
of any works devoted to the interaction of many stochastic MOs,
especially under the conditions of their turbulent stirring.
The aim of the present work is a theoretical study of the

oscillatory AOT-BZ reaction which we represented as a sum
of many diffusionally coupled stochastic MOs under their
turbulent stirring. As a model of the BZ reaction, the Orego-
nator model19 was chosen being the simplest one. Thus we
shall consider the assembly of stochastic Oregonators.
This system relates to most complex systems of the “reac-

tion-diffusion-convection” type+ fluctuations. To solve such
systems we developed the method of the probability cellular
automaton (PCA).20 With the PCA method, in which the Monte
Carlo procedure was applied, we were able to explain the stirring
effect discovered earlier in the closed BZ reaction21 and to prove
that the average velocity of the motion of the turbulently stirred
media affects the behavior of nonlinear chemical reactions
proceeding in the media. This effect emerges at the level of
the interaction between hydrodynamic fluctuations in the
velocities of liquid elements (microeddies) and large-scale
concentration fluctuations in key intermediates of the reaction
because the spatial characteristic lengths of these fluctuations
nearly coincide for such liquids as water. In this work we used
the PCA method to study how the coupling strength (mass
exchange coefficient) between MVs and the spatial size of MVs
affect the oscillation frequency of the whole oscillator-
Oregonator assembly as a unified system under turbulent stirring.

2. PCA Method for the Oregonator Model

A detailed description of the PCA method for the stochastic
Oregonator can be found elsewhere.20 Here we shall only
briefly outline the principles of the PCA functioning and some
innovations made. The PCA independently models three
processes: (a) molecular diffusion, (b) turbulent stirring, and
(c) chemical reactions. In this work all the processes are mostly
modeled on the lattice consisting ofN0 ) N2 (N is an integer)
) 322 or N0 ) 642 equal elementary cells. An elementary cell

is assigned to have a volumeVc and linear sizelc ) (Vc)1/3.
The valueVc is used to determine the probability of bimolecular
reactions being simulated independently in each elementary cell.
The lattice is self-closed, i.e., the opposite sides of the lattice
are assumed to be adjacent.
Block “Diffusion”. Molecular diffusion is given by the

probabilityW(m,k|r,s) to findm andk particles at the moment
t + StepDifin two randomly chosen neighboring cells (in our
case, the “central” cell has eight neighboring cells; coordination
number) 8), if at the momentt they containedr andsparticles
of this sort, whereStepDif is the constant time step which
separates successive operations of diffusion modeling (procedure
or block “diffusion”), then

The intensity of mass exchange (or, which is the same, of the
molecular diffusion) is regulated either by the valueStepDifor
by the value (ND)(N0) of randomly chosen pairs of adjacent
cells at one time stepStepDif. The value ofND did not exceed
0.5. The ratioND/StepDif determines the constant (or fre-
quency)kex of particle jump into an adjacent cell.20

The valuekex relates to the diffusion coefficientD0:20

The Oregonator model uses three independent variables X, Y,
and Z: X) HBrO2 is an activator, Y) Br- is an inhibitor,
and Z is a catalyst represented either cerium(IV) ion or ferriin
(Fe(phen)33+, phen) phenanthroline). Each of these particles
has its own diffusion coefficient. In the PCA this is accounted
for by using three various numbers ofND (NDX,NDY, andNDZ)
and by independent application of the “diffusion” procedure for
each variable at each time stepStepDif.
Block “Stirring” . Turbulent stirring (block “stirring”) is

performed in regular intervals of time (StepMix) by selecting a
squareL × L in size (L < N) in an arbitrary place of the lattice
NL times and by randomly pairwise rearranging the square’s
four quadrants. The stirring intensity is given by the time step
StepMixand a numberLeV. The larger theLeV and the smaller
the StepMix, the higher the stirring intensity. For eachLeV
number there are the corresponding numbersNL andL presented
in Table 1. For instance, for the lattice 32× 32 in size and
LeV ) 3 and with each time stepStepMix, a square of the size
L × L, whereL randomly assumes any of the values of 32, 30,
28, or 26, is chosen one time, the squares of the size from 16
× 16 to 10× 10 are chosen four times, and the squares of the
size from 8× 8 to 4 × 4 are chosen 32 times. A detailed
description of the “stirring” procedure is given elsewhere.20

The intensity of macromixing is characterized by the mixing
rate constantkmix determined in the experiments by mixing two
equal parts of the lattice, whose cells are in different statesn at
the initial moment of time, wheren is the number of particles

TABLE 1: Dependence ofL (Size Range of the Randomly Chosen Squares) andNL (Number of Times the Squares of a Given
Size Range Were Sampled) at a Single Time Step on the Stirring Level,LeW, at N0 ) 642, N0 ) 322, and 162

Lev NL

N0 ) 16× 16 N0 ) 32× 32 N0 ) 64× 64 L N0 ) 16× 16 N0 ) 32× 32 N0 ) 64× 64

1 64-56 1
1 2 32-26 1 4

1 2 3 16-10 1 4 16
2 3 4 8-4 8 32 128
3 4 5 4-2 64 256 1024

W(m,k|r,s) ) (r + s)!/(k!m!) (1/2)k(1- 1/2)m (5)

kex ) ND/StepDif (6)

D0 = kex lc
2 (7)
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of the same sort; for example,n ) 0 for the cells of one half
andn ) 200 for the cells of the other half of the lattice. The
mixing rate constantkmix was determined by fitting the
experimentally obtained dependence of (σ2 - σeq2) on time with
the expression

whereσ2 is the dispersion determined by the formula:

N(n) is the number of cells containingn particles of a given
sort,σ02 is the dispersion at the initial moment of timet ) 0,
σeq2 is the equilibrium value of the dispersion att f ∞, and
σeq2 ) 〈n〉. The constantskmix are determined by the linear
regression method22 with R-squared values not less than 0.95-
0.98. Such highR-squared values are explained by the fact
that the dependencies of (σ2 - σeq2) on t are practically the
straight lines in the coordinatest, ln(σ2 - σeq2). Typical
dependencies of (σ2 - σeq2) on t at variouskex are presented in
the Supporting Information in Figure 1S.
The valuekmix depends on the rate of micromixing (diffusion)

determined by the valuekex and on the stirring rate determined
by the valuesStepMix and LeV. When the rate of cell
rearrangement is high enough, the constantkmix is completely
determined by the diffusion, so thatkmix = kex. The depend-
encies ofkmix onkex for various stirring levelsLeV are presented
in Figure 1A. The “stirring” procedure may become the limiting
step of macromixing at smallerStepMixandLeV. The depend-
encies ofkmix on StepMixat variouskex andLeV are shown in
Figure 1B. It can be seen from Figure 1B that asStepMix
decreases, the valuekmix tends to the limit that equalskex for
the corresponding curve.
This model of the cells-MOs coupling somehow resembles

the model of global coupling when each oscillator is coupled
with all the rest. When the rate of macrorearrangement of the
cells is great in comparison withkex, the probabilities averaged
over some long time intervalT (for example, over the oscillation
period) that mass exchange between a randomly chosen cell
and any other of theN0 cells occurs are equal. The difference
between this model and the global coupling is in the fact that,
for this model, at a given moment of timet the mass exchange
is possible only with the adjacent cells, which represents the
facts.
Block “Chemistry” . Five chemical reactions of the Orego-

nator model running independently in each elementary cell were
simulated by the Monte Carlo method. At each time stepτ (τ
differs from StepDif and StepMix) for every cell, a random
numberθ (θ ∈ [0,1]) was generated. If the relationθ < Wi

held, thei-th reaction was realized, whereWi is the probability
that a number of particles of the corresponding sort contained
in an elementary cell (n) changes by the stoichiometric coef-
ficient of the i-th reaction in the cause of the reaction being
realized.
Table 2 presents the reactions of the Oregonator model, their

first-order constantsγi which control the reactions in nano- and
microvolumes,20,23and the corresponding reaction rates and their
probabilitiesWi. Since the discrete variablesnX, nY, andnZ,
wherenX, nY, andnZ are the numbers of particles X, Y, and Z,

respectively, contained in an elementary cell with the volume
Vc, may change only by the whole number, then the coefficient
g is taken to beg ) 0.5, and reaction R5 is interpreted as
follows:

with the probability of its run beingW5/2.
Time stepτ was determined for each discrete moment of time

from the relation

whereqi are the rates of thei-th reactions presented in Table 2,
while the values ofnX, nY, andnZ are taken from the preceding
moment of time. The stepτ depends on the oscillation phase
and varies, as a rule, from 10-5 to 10-2 s. As the number of
particles in the cell increases in the cause of the reaction, the
step τ decreases, and vice versa. The main characteristic
parameters and constants of all three processes modeled by the
PCA are summarized in Table 3.

3. The Values of Model Parameters

Our system’s behavior is affected by many parameters. These
are the reaction rate constants of the Oregonator model, mass

(σ0
2 - σeq

2) exp(-kmixt) (8)

σ2 )
1

N0
∑
n)0

nmax

(n- 〈n〉)2N(n) (9)

〈n〉 )
1

N0
∑
n)0

nmax

n N(n) (10)

Figure 1. The dependence of the macromixing constantkmix at various
stirring levelsLeV for the lattice of sizeN0 ) 322 on (A) the constant
of mass exchangekex between the neighboring cells and (B) on the
time stepStepMix at various constantskex. PCA parameters: (A)
StepMix) 0.05 s,LeV ) 4 for curve 1,LeV ) 3 for curve 2,LeV ) 2
for curve 3; (B) for curve 1LeV ) 3 andkex ) 32 s-1, for curve 2LeV
) 2 andkex ) 32 s-1, for curve 3LeV ) 2 andkex ) 10 s-1.

nZ f nZ - 2

nY f nY + 1
(R5′)

τ ) 0.1/max{qi} (11)
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exchange constantskex (or diffusion constantsD0) for each
variable of the Oregonator model, and the characteristics of
macromixingStepMixandLeV integrated together withkex in
the constantkmix. Since our model is based on the AOT-BZ
reaction, we turned to the real system to estimate all the possible
values of these parameters.
The diffusion coefficients undertake considerable changes in

comparison with the homogeneous aqueous media. In AOT
microemulsion, the diffusion of the water-soluble particles
localized in micelle water cores occurs as a result of fusion-
fission of water nanodroplets diffusing in the organic phase.
The characteristic constantkex of mass exchange between
micelles is determined by the expression

wherekd is the constant of the diffusion-controlled reactions,
Cm is the concentration of micelles in the whole volume of
microemulsion,pf is the coefficient determining which part of
the collisions between micelles leads to mass exchange. For
the characteristic values ofpf, kd, andCm (pf ) 0.001- 1, kd
= 109 - 1010 M-1 s-1, andCm ) 10-5 - 10-2 M), kex is equal
to 102-108 s-1. With the formation of large clusters, the
constantkd decreases by 1-2 orders of magnitude due to an
increase in microemulsion viscosity and the valueCm is replaced
by the concentration of clustersCc and, accordingly, decreases
by 1 - 3 orders of magnitude, whilepf becomes rather
indeterminate because of the uncertainty in cluster structure and
in the mechanism of mass exchange between clusters but is
certain not to grow,pfkd < 105 M-1 s-1.15,24,25 Hence, with
cluster formation, the constantkex may decrease by 1-5 orders
of magnitude, andkex ) pfkdCc ) 10-2-103 s-1. Therefore,
the valuekex should vary within the broad limits in our computer
experiment.
Sincekex is connected withD0 by relation 7, wherelc may

be regarded as the average distance between micelles (or
between clusters in the case of their presence),lc = (CmNA)-1/3,
and thenD0 may be estimated from eqs 3, 7, and 12 as

For the characteristic values ofpfkd, Rw, andφw (pfkd ) 107-
108 M-1 s-1, Rw ) 2-5 nm, andφw ) 0.1), theD0 is found to
be (1× 10-8-2 × 10-7) cm2/s.
For the AOT-BZ reaction catalyzed by ferroin, the following

obstacle may prove to be significant. It is known26 that the
exchange of phenanthroline metallocomplexes between AOT
micelles occurs at each collision of the micelles, i.e.,pf = 1 for
ferroin. This is explained by phenanthroline solubility in long
fatty ends of AOT molecules. The exchange of small water-
soluble molecules and ions, like HBrO2 and Br-, occurs at each
100th collision of micelles, i.e.,pf = 0.01 for HBrO2 and Br-.
Let us denote the constantskex andD0 for particles X, Y, and
Z as kX, kY, kZ andDX, DY, DZ, respectively. Then for the
Oregonator model, in which Z is ferriin, we can write that

and

It is known27,28 that with relationships 14 in the Oregonator
model, Turing structures may arise from the spatially homo-
geneous unstirred stationary state. However, because of small
values ofDX, DY, andDZ in the AOT-BZ reaction, the size of
these structures should be comeasurable with 1µm, and hence,
they may be hardly observable.
For single micelles, the valueVmNA may vary from 20 to

1000 M-1. If clusters are formed by 100-1000 micelles, the
valueVcNA may vary from 2× 103 to 2× 105 M-1. Hence, a
probable variation range ofVcNA lies between 103 and 106 M-1.
A characteristic time of mixing,tmix ) 1/kmix, for aqueous

systems in small laboratory reactors ranges from 0.1 to 1 s at
stirring rates from 200 to 1000 rpm. In viscous media, this
time, naturally, becomes longer and may reach 1-10 s. The
frequency-multiplying bifurcation in the AOT-BZ reaction was

TABLE 2: Reactions of the Oregonator Model, Monomolecular Reaction Rate Constants (γi), Monomolecular Reaction Rates
(qi), and Corresponding Probabilities (Wi)a

no. reactions γi, s-1 qi, s-1 Wi

R1 A+ Y f X k1[A] ) 0.02-0.06 k1[A]nY k1[A]nYτ
R2 X+ Y f 0 k2/(VcNA) (k2/(VcNA))nXnY (k2/(VcNA)) nXnYτ
R3 A+ X f 2X + 2Z k3[A] ) 2-6 k3nx ) k3[A]nx k3[A]nXτ
R4 X+ X f 0 k4/(VcNA) (2k4/(VcNA))nX(nX - 1) (2k4/(VcNA))nX(nX - 1)τ
R5 Z+ B f gY k5[B] ) 1 k5[B]nZ k5[B]nZτ

a A ) BrO3
-, B ) malonic acid, X) HBrO2, Y ) Br-, Z ) catalyst in oxidized state, g is the stoichiometric factor,g ) 0.5,Vc is the volume

assigned to the PCA elementary cell,NA is the Avogadro number,τ is the time step assigned to a single cycle of the program. Basic set of the
constantski: k1 ) 0.2 M-1 s-1, k2 ) 2 × 105 M-1 s-1, k3 ) 20 M-1 s-1, k4 ) 2 × 103 M-1 s-1, k5 ) 1 M-1 s-1. [B] ≡ b ) 1 M; [A] ) 0.3 M or
[A] ) 0.1 M.

TABLE 3: Summary Table with the Main Parameters and Characteristics of All Three Processes Modeled by the PCAa

parameters molecular diffusion turbulent stirring chemical reactions

time step through which a corresponding operation block is fulfilled StepDif StepMix τ
number of operations in a block ND× N0

∑
1

LeV

NL

qN0

probability of a single operation W(m,k|r,s) Ws Wi

pseudo-first-order constants of the process rate kex kmix γi

a ParametersLeV, NL, andL are given in Table 1. ProbabilitiesWi and constantsγi are given in Table 2.N0 is the number of elementary cells
in square PCA’s lattice.q is the number of chemical reactions modeled;q ) 5 for the Oregonator.i is the reaction number:i ) 1, ..., q. The
probabilityW(m,k|r,s) and time stepτ are determined by formulas 5 and 11, respectively.Ws is the probability that at least two out of four quadrants
of a randomly chosenL × L square will be randomly pairwise rearranged during a single operation,Ws ) 3/4. The parametersStepDif, StepMix,
ND, N0, LeV, γi ) f (ki,Vc), Vc, andki were varied in the PCA model, but all of them remained constant through one computer experiment. The
parameterskex, kmix, andγi determine the main kinetic characteristics of the processes.kex is given by formula 6.

kex ) pfkdCm (12)

D0 ) pfkdCm(CmNA)
-2/3 ) pfkd (3φw/4π)1/3/(RwNA) (13)

DX ≈ DY , DZ (14)

kX ≈ kY , kZ (15)
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discovered at high enough stirring.14 Therefore in our computer
experiment, we shall also use high stirring intensities at which
the process of macromixing is limited by the mass exchange
constant and the equalitykmix = kex is fulfilled. The main
characteristic constants of AOT microemulsion (kex, VcNA, and
kmix), determining the amplitude and frequency of concentration
fluctuations, are summarized in Table 4.
The reaction rate constants of the elementary steps for the

AOT-BZ reaction notably differ from those for the BZ reaction
proceeding in the homogeneous aqueous media.13 Thus, the
constants in the Oregonator model may also differ from the
accepted ones.29 In this work, we use the basic set of the
constants presented in Table 2. The concentration of A is a
varying parameter ranging from [A]≡ a ) 0.02 M toa ) 1
M. The interval 0.02-1 M involves the Hopf bifurcation point
for the model parameters used. With the given set of constants,
the rate of Y particles’ appearance in reaction R5 (k5b) 1 s-1)
is much larger than the rate of their disappearance in reaction
R1 (k1a, k5b). Therefore the rate of a decrease and approach
of [Y] to [Y] cr ) ak2/k3 is fully determined by the rate of reaction
R1. Another peculiarity of the basic set of constants is the
similarity of the kinetic curves [X] versust and [Z] versust.

4. Results and Discussion

To choose the parametera we first obtained a bifurcation
diagram by solving numerically the system of ordinary dif-
ferential equations (ODE) for the Oregonator at variousa.
Typical shapes of kinetic curves obtained from the solution of
the ODE for variousa and the bifurcation diagram are presented
in the Supporting Information in Figures 2S and 3S, respectively.
It follows from the bifurcation diagram (Figure 3S) that ata <
0.053 M, the system remains in the stationary state, while ata
> 0.054 M, the system exhibits sustained oscillations. The
dependence of the oscillation periodT0 (obtained from the
solution of the ODE) ona is presented in the Supporting
Information in Figure 4S. An increase ina from 0.054 to 0.1
M is followed by a decrease in the minimum value [X]min of
the oscillating value of [X] from 10-5 to 10-7 M and an increase
in the period from 40 to 75 s. Asa grows further, [X]min starts
growing while the periodT0 starts shortening, in particularT0
) 41.7 s ata) 0.3 M. PeriodT0 passes through the maximum
at the pointa ) 0.1 M. The data of Figures 2S-4S are used
as the reference data for the results obtained by the PCA method.
The bifurcation diagram resulting from the solution of the

stochastic Oregonator by the PCA method at high values ofkex
(kex > 30 s-1) completely matches the diagram obtained from
the solution of the ODE. The dependence of the oscillation
periodT∞ on a (shown in Figure 4S) also reproduces well the
dependence ofT0 ona, thoughT∞ is somewhat smaller thanT0
at alla. The symbolT∞ denotes the maximum oscillation period
T at kex f ∞. For the basic set of the Oregonator model
constants and atVcNA > 105 M-1, the periodT ceases to depend
on kex at kex > 50 s-1. With the growth inVc, the difference
betweenT∞ and T0 disappears. In view of the bifurcation
diagram and the dependence ofT∞ on a, two values of the
parametera were chosen in the oscillation area for further
studies by the PCA method:a ) 0.1 M anda ) 0.3 M.

4.1. Evidence for Frequency-Multiplying Bifurcation.
Kinetic Curves. Noticeable differences in the behavior of the
stochastic and deterministic Oregonator emerge when the values
of kex for X and Y become smaller, i.e., at a decrease inkX and
kY. Later, if not noted specifically, we shall use equal values
of kX and kY, and write only kX meaning thatkX ) kY.
Characteristic kinetic curves for variables〈nY〉 and 〈nZ〉 at
variouskX are shown in Figure 2. Variables〈nX〉, 〈nY〉, and
〈nZ〉 determined in the PCA model by formula 10 relate to the
variables [X], [Y], and [Z] as

whereVc is the volume ascribed to a PCA cell. At highkX (kX
> 30 s-1), the wave shape of oscillations obtained by the PCA
method completely matches the wave shape of reference
oscillations resulting from the ODE solution. At the same time,
at low kX (kX < 10 s-1), the amplitude and oscillation period
get smaller, and the shape of oscillations changes also, for
instance, oscillations of the value〈nZ〉 assume the shape
resembling sinusoidal oscillations (Figure 2). In addition, at
smallkX, the relation abnormal for the oscillatory regime starts
to hold:

where〈nY〉cr ) [Y] crVcNA and [Y]cr ) ak3/k2 (critical concentra-
tion [Y]cr is determined from the equality of the rates of reactions
R2 and R3). As is known, autocatalytic multiplication of X
molecules in the Oregonator model, which is the necessary
condition for oscillations, starts when [Y]< [Y] cr. Relation
17 testifies to the presence of highly inhomogeneous states in
the system of poorly coupled MOs.
To follow the origin of such extraordinary high-frequency

oscillations, we determined the dependence of the oscillation
period and amplitude on the mass exchange constantkex, on
the cell volumeVc, and on the number of cellsN0 of the lattice.
The ranges of thekex andVcNA values, characterized by the
most considerable variations in the periodT and oscillation
amplitude, are given in Table 4. Notice that these ranges agree
well with the analogous ranges estimated by the experimental
data.

TABLE 4: Ranges of the Main Parameter Values for AOT Microemulsion and the Corresponding Parameters for the PCA
Model

range of parameters kex, s-1 VcNA, M-1 kmix, s-1

for AOT microemulsion estimated by the experimental data 10-2-103 103-106 1-10
for the PCA model studied in this work 0.7-100 7× 103- 1× 106 kmix ) kex
in which the bifurcation valueskex ) kcr are discovered 1-6 (1100/kcr)1.76 kmix ) kex

Figure 2. Kinetic curves for variables〈nY〉 and 〈nZ〉 obtained by the
PCA method for the stochastic Oregonator model for various mass
exchange constantskX. A basic set of the Oregonator model constants
was used ata ) 0.3 M. PCA parameters:N0 ) 322, VcNA ) 4 × 104

M-1, kZ ) 32 s-1, kX ) kY, StepDif) 0.01 s,StepMix) 0.05 s,LeV
) 3.

〈nX〉 ) [X]VcNA, 〈nY〉 ) [Y]VcNA, 〈nZ〉 ) [Z]VcNA (16)

〈nY〉min > 〈nY〉cr (17)
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Dependencies ofT on kX at Various VcNA. The depend-
encies of the oscillation periodT on kX at variousVcNA, shown
in Figure 3, demonstrate the threshold changes inT with the
variation inkX in the vicinity of some critical pointkcr. Figure
3 shows that the oscillation periodT decreases with a reduction
in kX, and as soon askX achieves a critical valuekcr, it ceases
to change and attains its limiting minimum valueTm. Figure 3
also shows that the smaller theVcNA, the larger the decrease in
the oscillation period. From the dependencies of the ratioT∞/
Tm on VcNA and of the critical valuekcr on VcNA presented in
Table 5 fora ) 0.3 M, one can see that the smaller theVcNA,
the larger theT∞/Tm andkcr. Since with a decrease in the volume
Vc of a cell the number of particles X, Y, and Z contained in it
decreases and the fluctuation amplitude becomes larger, we may
suggest that fluctuations play a decisive role in the effect

observed. The comparison of parts A and B of Figure 3 also
shows that the value ofa has hardly any effect on the
dependenciesT(kX).
The differenceT - Tm, which can be defined as the order

parameter, depends onkX near the critical pointkcr at kX > kcr
as

where â ) 1/2. Such a dependence of the system order
parameter on the controlling parameter (kX - kcr) with the
critical index â ) 1/2 is typical for the equilibrium phase
transition of the second order and for nonequilibrium phase
transitions.30,31 The dependencies of (T - Tm) on (kX - kcr)1/2

at differenta andVcNA are given in the Supporting Information
in Figure 5S.
Dependence ofT on VcNA at kX ) Constant. As follows

from Figure 3, at a value ofkX such that 2< kX < 5.7, the
threshold dependencies of the periodT onVc, analogous to the
dependencies ofT on kX, may be obtained. Such an example
is shown in Figure 4. One can also see from Figure 4 that the
periodT tends to some limit atVcNA f ∞. It is evident that
this limit is the periodT0 ) 41.7 s of the deterministic
Oregonator.
Dependence of Oscillation Amplitude onkX. Similar to

the periodT, the oscillation amplitude undergoes drastic change
at the critical point. Figure 5 shows the dependencies of the
minimum and maximum values of〈nY〉 and 〈nZ〉 on kX. The
analogous dependencies for the other values ofa andVcNA are
presented in the Supporting Information in Figures 6S and 7S.

Figure 3. The dependencies of the oscillation periodT on the mass
exchange constantkX in the stochastic Oregonator model at various
volumesVc of PCA cell. A basic set of the Oregonator model constants
was used at (A)a ) 0.3 M and (B)a ) 0.1 M. PCA parameters:N0

) 322, (+) VcNA ) 5× 105 M-1, ([) VcNA ) 1× 105 M-1, (9) VcNA

) 4 × 104 M-1, (4) VcNA ) 2 × 104 M-1, (b) VcNA ) 1 × 104 M-1,
kZ ) 32 s-1, kX ) kY, StepDif) 0.01 s forkX < 30 s-1 andStepDif)
0.001 s forkX > 30 s-1, StepMix) 0.05 s,LeV ) 3.

TABLE 5: Dependencies of the PeriodsT∞ and Tm, the
Ratio T∞/Tm, and the Critical Constant of Mass Exchange
Rate kcr on the Molar Volume VcNA of a PCA Cell for the
Stochastic Oregonator Model with the Basic Set of Constants
at a ) 0.3 Ma

VcNA × M kcr× s T∞, s Tm, s T∞/Tm

1× 104 5.77 34 11.3 3
2× 104 3.9 34.5 13.6 2.5
4× 104 2.7 35 17.5 2
1× 105 1.54 36 21 1.7

a PCA parameters:N0 ) 32× 32,kZ ) 32 s-1, kX ) kY, StepDif)
0.01 s forkX < 30 s-1 andStepDif) 0.001 s forkX > 30 s-1, StepMix
) 0.05 s, andLeV ) 3.

Figure 4. The dependencies of the oscillation periodT on VcNA.
Parameters:a ) 0.3 M kX ) kY ) 3.2 s-1; the remaining parameters
are the same as in Figure 3.

Figure 5. The dependencies of the maximum and minimum values of
〈nZ〉 and 〈nY〉 on kX in the stochastic Oregonator model ata ) 0.3 M
andVcNA ) 1× 104 M-1; the remaining parameters are the same as in
Figure 3.

(T- Tm) ∝ (kX - kcr)
â (18)
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As follows from Figure 5, a sharp decrease in the oscillation
amplitude (〈nY〉max - 〈nY〉min and〈nZ〉max - 〈nZ〉min), beginning
approximately atkX < 10 s-1, stops at the critical pointkcr )
5.7 s-1, and atkX < kcr, the oscillation amplitude becomes more
or less stable. For the case presented in Figure 5, the ratio of
the oscillation amplitude atkX e kcr to that atkX . kcr equals
10 and 5 for〈nZ〉 and〈nY〉, respectively. The smaller theVcNA,
the larger the extent of the amplitude fall and oscillation
frequency growth with thekX decrease. Figure 5 also shows
that the abnormal inequality in eq 17 holds true atkX < 8 s-1

because〈nY〉cr ) 0.3 in this case. It is interesting to note that
the dependence of amplitude on oscillation frequency has a
linear character in the rangekcr < kX < 2kcr.
Dependence of the Substrate A Consumption Rate onkX.

Apart from the oscillation period and amplitude, in the range
of kX ∈ (kcr, 2kcr) drastic changes occur with the values of [Y]
and [X] averaged over the oscillation period

where∆t is the constant time interval through which the values
of all the system variables are written in the file (T . ∆t . τ)
andm is the number of the whole periods. The values〈[Y] 〉
and 〈[X] 〉 determine the substrate A consumption rate in
reactions R1 and R3, averaged over the period. Substrates A
and B serve as the source of energy, which supports oscillations.
Since with the chosen constants of the Oregonator model the
substrate B consumption rate,V5 ) bk5[Z], is 2 times larger
than the substrate A consumption rate in reaction R3,V5 ) 2V3,
the dependence of〈[Z] 〉 on kX adds no new information to that
supplied by the dependence of〈[X] 〉 on kX.
Figure 6 presents the dependencies〈[Y] 〉 and 〈[X] 〉 on kX.

As follows from Figure 6, the values〈[Y] 〉 and 〈[X] 〉 reach
stationary level atkX > 2kcr (2kcr ) 11.4 s-1), while atkcr < kX
< 2kcr, the values〈[Y] 〉 and 〈[X] 〉 change drastically (by
approximately 2 times) which means a change in the energy
consumption (substrates A and B) by the system of slightly
coupled stochastic oscillators. It is interesting to note that at
kX > 2kcr, when the values〈[Y] 〉 and〈[X] 〉 cease to change, the

periodT continues growing and achieves its limiting valueT∞
only atkX . 2kcr. At kX < kcr, the values〈[Y] 〉 and〈[X] 〉 resume
their growth, which is caused by the large mass exchange
constantkZ ) 32 s-1. For the case ofkZ ) kX ) kY ) kex that
will be discussed later, the values〈[Y] 〉 and〈[X] 〉 do not grow
at kex < kcr. The considered peculiarities of the dependencies
of 〈[Y] 〉 and〈[X] 〉 on kX hold in the entire studied range of the
VcNA values from 104 to 105 M-1. The dependencies of〈[Y] 〉
and 〈[X] 〉 on kX for various a and VcNA are given in the
Supporting Information in Figures 8S and 9S.
Dependence ofT on N0. The experiments on how the

oscillation period depends on the total numberN0 of the
elementary cells demand special care. The matter is that in the
Oregonator model (reactions R1-R4 + R5′), where the
variablesnX, nY, andnZ are represented by whole numbers, there
are the dead-end combinations of these numbers at which the
chemical reactions, proceeding in a cell, stop. Table 6 presents
some possible sequences of the reactions which lead to the dead-
end combinations (0, 0, 1) and (0, 0, 0), where the numbers in
the brackets equalnX, nY, andnZ, respectively. The variations
given in Table 6 are highly probable for small-volume cells
with few particles. If both the amount of cellsN0 and cell
volumeVc are small, the contribution of the cells with the dead-
end combinations to the dynamics of the entire system grows,
which shows itself in the extension of the chemical processes,
and, consequently, in the longer oscillation period. The only
way for a cell to leave a dead-end state is to perform mass
exchange with the adjacent cells. If we enlarge the mass
exchange constantkex up to values of the order of (τ-1)max, where
τ is determined by formula 11, then the influence of the cells
in the dead-end states will be nullified even for smallN0.
With the account of the peculiarities mentioned above which

proved to be significant only forN0 < 102, we found that the
oscillation period is independent of the amount of cellsN0 for
VcNA ) 4× 104 M-1 if N0 > 162 and forVcNA ) 1× 104 M-1

if N0 > 322; i.e., the period is independent of productN0Vc if
N0Vc is large enough,N0VcNA > 107 M-1. This relates both to
the periodT∞ and the periodTm. In these experiments, the value
N0 was enlarged up to 1282. AsN0 was taken larger, the stirring
levelLeV increased consequently too,20 and the equalitykmix )
kex was held.
The independence ofTm from N0 at rather highN0Vc allows

us to say that the observed effect of oscillation frequency
multiplication with a decrease in the coupling strength between
MOs is not a result of mere summing up of oscillations produced
by few (10-100) stochastic oscillators with noncorrelated
phases. To the contrary, we may state that the emergence of
high-frequency oscillations with the periodTm results from weak
synchronization of stochastic MOs.
Kinetic Curves of Dispersions. The dependencies of the

dispersionsσX2, σY2, andσZ2 on time justify the last statement.
At kX . kcr, for any phase of oscillations, the following
relationships hold true:σX2 = 〈nX〉, σY2 = 〈nY〉, andσZ2 = 〈nZ〉.
This testifies to the equilibrium Poisson distribution of X, Y,
and Z particles among the cells and, hence, to the complete
synchronization of MOs. AtkX e kcr only the relationσZ2 =
〈nZ〉 holds, while the dispersionsσX2 andσY2 start to depend

Figure 6. The dependencies of the〈[Y] 〉 and 10〈[X] 〉 averaged over
the oscillation period onkX for the stochastic Oregonator. All the
parameters are the same as in Figure 5.

TABLE 6: Possible Sequences of the Stochastic Oregonator
Reactions Leading to the Dead-End Combinations of
Numbers nX, nY, and nZ in an Isolated PCA Cell

reaction nX nY nZ reaction nX nY nZ

R5′ 0 1 2 R5′ 0 1 3
R1 0 2 0 R1 0 2 1
R2 1 1 0 R2 1 1 1

0 0 0 0 0 1

〈[Y] 〉 )
1

mT
∫0mT

〈nY〉

VcNA

dt )
∆t

mT
∑
t)0

t)mT 〈nY〉

VcNA

(19)

〈[X] 〉 )
1

mT
∫0mT

〈nX〉

VcNA

dt )
∆t

mT
∑
t)0

t)mT 〈nX〉

VcNA

(20)
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on the oscillation phase as is shown in Figure 7. The largest
difference between eitherσX2/〈nX〉 or σY2/〈nY〉 and unity is
observed in the fast phase of the autocatalytic growth of X
molecules (k3a ) 6 s-1) and in the following fast phase of
Z-to-X conversion (k5b) 1 s-1). During the slow phase of the
Y-to-X conversion (reaction R1,k1a ) 0.015 s-1), the distribu-
tion of all the particles among the cells becomes Poissonian,
and hence, MOs at this time interval are synchronized.
4.2. Scenario of the Emergence of Frequency-Multiplying

Bifurcation. As Figure 7 shows, the dispersionσX2 is the first
of σX2 andσY2 to deviate from the equilibrium value. On this
basis, we may suggest the following scenario for the oscillation
frequency multiplication. Let all the MOs be synchronized, and
let 〈nY〉 . 〈nY〉cr (a slow phase of reaction R1) at the initial
moment of time. Then, as a result of the probability character
of the reactions in MV (reaction R1, in particular) and of the
equilibrium fluctuations in the number of Y particles (nY) due
to the mass exchange between the neighboring MVs, the number
nY lowers randomly below the critical value〈nY〉cr in few cells
(or even in one cell). In these cells, the autocatalytic multiplica-
tion of X particles may start. If mass exchange constantskX
andkY are large, the critical fluctuation,nY < 〈nY〉cr, disappears,
while in the opposite case, when these constants are small
enough, autocatalysis starts to develop in the cells with critical
fluctuations (nuclei) and then spreads to the other cells which
take part in mass exchange with the nuclei. Z Particles quickly
forming in these cells (in the cause of reaction R3) and Y
particles resulting from them (in the cause of reaction R5′) do
not allow the average value〈nY〉 become lower than〈nY〉cr. At
this time interval (phase of reactions R3 and R5), the values
σX2/〈nX〉 andσY2/〈nY〉 differ notably from unity. This mecha-
nism explains why the oscillation periodT shortens whenkX
andkY (kX ) kY) decrease, but tells nothing about why the high-
frequency oscillations occur with more or less regular period
Tm if autocatalysis starts accidentally in an arbitrary cell.
In the cause of further analysis, we followed the behavior of

an individual separate stochastic oscillator and the variation in
the oscillation period in response to a decrease in the lattice
size up toN × N ) 2 × 2 at extremely high values ofkex (kX
) kY ) kZ ) kex), above which the oscillation period is no longer
sensitive tokex. As mentioned above, for small-size lattices,
this requirement is satisfied with the proviso thatkex g (1/τ)max.
Figure 8 shows the〈nZ〉 oscillation pattern forN× N ) 2× 2
at kex ) 1000 s-1. With such a highkex, a 2× 2 cell lattice
may be considered as a single stochastic oscillator because the
intercellular mass exchange rate is much higher than the rate
of chemical reactions. As may be seen in Figure 8, the
oscillations of individual MO are of stochastic type: a period

and amplitude vary randomly. But as soon as the amount of
cells in a lattice increases, the oscillations acquire regular
character. Figure 9 presents the dependence of the subsequent
periodTn+1 on the previous periodTn for the oscillations shown
in Figure 8 and for the same model of oscillations but simulated
on a 16× 16 cell lattice, whereTn is the duration of then-th
period of oscillations. Figure 10S in the Supporting Information
shows the analogous dependencies ofTn+1 on Tn for a larger
value ofVc (VcNA ) 5 × 105 M-1).
As follows from Figure 9 (and Figure 10), with a larger size

of the lattice, the dispersion of the periodsTn and, hence, the
stochastisity of oscillations decrease markedly, while the aver-
aged value of the periods,〈Tn〉, varies slightly. The depend-
encies ofTn+1 on Tn obtained forN × N ) 2 × 2 at various
VcNA show that the smaller theVc, the larger the dispersion in
Tn under otherwise identical conditions. It may also be noticed
that the minimum value of the periodTn differs only slightly
from the limiting value of the periodTm at equalVcNA. For
instance, it may be seen from Figure 9 that (Tn)min ) 20-25 s,
while it follows from Figure 3B thatTm ) 24-25 s at the same
VcNA ) 4 × 104 M-1. On the basis of the proximity of the
corresponding values of (Tn)min andTm

we may assume that the oscillation frequency multiplication
originates from the stochastisity of individual microoscillators.
If autocatalytic multiplication of X particles starts in any of the
numerous MOs, this “triggers” all the rest MOs, though the
value ofnY in all these cells-MOs has not yet become as low
as the critical〈nY〉cr.
To substantiate the above assumption, we obtained the

distribution of a large number (more than 1000) of periods of
oscillations over the values ofTn (histogram) for the stochastic

Figure 7. The dependencies of the dispersionsσX
2 andσY

2 (as ratios
σX

2/〈nX〉 andσY
2/〈nY〉) on time for the stochastic Oregonator ata) 0.3

M and k1 ) 0.05 M-1s-1; the remaining Oregonator parameters are
the same as in the basic set of constants. PCA parameters:N0 ) 322,
VcNA ) 4× 104 M-1, kZ ) 30 s-1, kX ) kY ) 1.6 s-1, StepDif) 0.01
s, StepMix) 0.05 s,LeV ) 3. To mark the oscillation phase, the
dependencies of〈nX〉, 〈nY〉, and 〈nZ〉 on time are also given by thin
lines.

Figure 8. Kinetic curve for〈nZ〉 obtained by the PCA method for the
stochastic Oregonator with the basic set of constants ata) 0.1 M and
VcNA ) 4 × 104 M-1. PCA parameters:N0 ) 22, kX ) kY ) kZ ) kex
) 1000 s-1.

Figure 9. The dependence of the subsequent periodTn+1 on the
previous periodTn (next-period map) for the oscillations (+) presented
in Figure 8 and for oscillations with the same Oregonator parameters
(b) simulated on the lattice with the following parameters:N0 ) 162,
kX ) kY ) kZ ) kex ) 160 s-1, StepMix) 0.05 s,LeV ) 3, VcNA ) 4
× 104 M-1.

(Tn)min = Tm (21)

Frequency-Multiplying Bifurcation J. Phys. Chem. A, Vol. 101, No. 38, 19977081



Oregonator simulated on a 2× 2 cell lattice at the extremely
high mass exchange constants. The results for the case ofVcNA

) 4× 104 M-1 anda ) 0.3 M are presented in Figure 10. The
histogram maximum falls exactly on the oscillation periodT)
41.7 s of the deterministic Oregonator (the valueT ) 41.7 s
was obtained from the numeric solution of the ODE for the
Oregonator model with the corresponding parameters) and
agrees well with the averaged value of〈Tn〉 ) 42.9 s. The
minimum values ofTn closely agree with the value ofTm )
17.5 s forkex e kcr when large lattices are used (see Figure
3A). The histogram (Figure 10) also shows that there are the
periods withTn < Tm. A more thorough analysis, however,
indicates that the emergence of these periods relates to the
extremely low values of oscillation amplitudes (small peaklets)
which only slightly exceed the background level (level of noise).
These small peaklets are probably unable to stimulate autoca-
talysis in the whole system when a large number of cells are
involved.
All the data presented in Figures 2-10 allow us to character-

ize the discovered effect as the bifurcation of oscillation
frequency multiplication in the system of a large number of
diffusionally coupled stochastic MOs at their intense stirring
and to state that this bifurcation is caused by internal fluctuations
of the system.
4.3. Connection between the Frequency-Multiplying

Bifurcation and the Main Kinetic Constants, i.e.,kX, kY, kZ,
kmix, and γi. Connection between the Bifurcation andkX.
So far we changed the values ofkX ) kY at kZ ) constant.
Thus, we are unable to conclude which one of the mass
exchange constants,kX or kY, leads to the bifurcation of
frequency multiplication. To solve this problem, we conducted
computer experiments considering the following cases: (i)kY
) kZ ) constant,kX is variable and (ii)kX ) kZ ) constant,kY
is variable. It turned out that in the cases when the constantkX
remained unchanged, the variations in the periodTwere slight,
and vice versa, when the constantkX was a variable, the
variations in the periodT were pronounced. Table 7 presents
some results that justify that the observed bifurcation mainly
depends onkX.
The Case ofkX ) kY ) kZ. We may conclude as well that

for such an important case askX ) kY ) kZ ) kex the oscillation
frequency multiplication may also be observed whenkex
decreases. The results of the computer experiments for this case
are presented by curve 3 in Figure 11. Curve 2 in Figure 11 is
the reference curve with the same model parameters as in the
aforementioned case whenkX ) kY are variables andkZ is
constant. Unlike Figure 3, in Figure 11 along the abscissa axis,

the constantkmix is plotted, which equalskX ) kY ) kex (see
Figure 1) for the parameters of the PCA at which curves 2 and
3 are obtained. According to Figure 11, forkX ) kY ) kZ )
kex, the oscillation periodT also shortens whenkex decreases.
At some critical pointkcr (kcr = 1.7 s-1), the rate of changes in
T, dT/dkex, decreases abruptly but does not reach zero, as in the
case of curve 2. The dependencies of maximum and minimum
values of〈nY〉 and 〈nZ〉 on kex and the dependencies of [〈Y〉]
and [〈X〉] on kex are analogous to the dependencies presented
in Figures 5 and 6 and are given in the Supporting Information
in Figures 11S and 12S.
Independence of the Bifurcation from Stirring Rate. Let

us consider now curve 1 in Figure 11. As was shown in section
2, the rate of macromixing characterized by the constantkmix
depends on the mass exchange constantkex and on the
convection intensity determined by valuesStepMixandLeV. All
of the above computer experiments on the detection of the
frequency-multiplying bifurcation were conducted at high
stirring intensity, when the macromixing rate is limited by the
micromixing rate andkmix ) kex. We checked the behavior of
the system in the opposite case, when macromixing is limited
by convection andkmix , kex. In these experiments, the constant
kmix was diminished by means of a growth in the time step
StepMix (see Figure 1B). The results of these experiments
presented by curve 1 in Figure 11 show that the periodT remains
practically unchanged askmix decreases atkex ) constant. On
the basis of the data from Figure 11, we may conclude that the
bifurcation of oscillation frequency multiplication depends on
the mass exchange constantkex and does not depend (or barely
depends) on the stirring rate (at least for the basic set of the
Oregonator constants).
Dependence of the Bifurcation on the Chemical Reaction

Rate Constants. In conclusion let us consider briefly how some
constants of the Oregonator model may affect the frequency-

Figure 10. Histogram for an ensemble of 1100 periodsTn obtained
for the stochastic Oregonator with the basic set of constants ata) 0.3
M andVcNA ) 4× 104 M-1; N0 ) 22, kX ) kY ) kZ ) kex ) 2500 s-1.
Along the abscissaaxis, the middle values of the 5-s-intervals are plotted
(the summation of the number of periods were done over 5-s-intervals).

TABLE 7: Dependence ofT on kX, kY, and kZa

kX, s-1 kY, s-1 kZ, s-1 T, s

1.6 1.6 32 17.4( 0.8
1.6 1.6 1.6 16.7( 0.8
1.6 5 1.6 18.8( 0.7
5 1.6 1.6 28.8( 0.3
5 5 5 30.1( 0.3
5 5 32 29.3( 0.9

a A basic set of the Oregonator constants was used ata ) 0.3 M.
PCA parameters:N0 ) 32 × 32, VcNA ) 4 × 104 M-1, StepDif)
0.01 s,StepMix) 0.05 s,LeV ) 3.

Figure 11. The dependencies of the oscillation periodT on the
macromixing constantkmix for the stochastic Oregonator with the basic
set of constants anda ) 0.3 M. PCA parameters:LeV ) 3, VcNA ) 4
× 104 M-1, the value ofStepMixis the variable for curve 1,kZ ) kX
) kY ) kex ) 10 s-1. For curves 2 and 3,StepMix) 0.05 s; for curve
2, kZ ) 32 s-1, kX ) kY ) kex ) kmix; for curve 3,kX ) kY ) kZ ) kex
) kmix.
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multiplying bifurcation. From the experiments and the theory
on the stirring effects in the BZ reaction,20,21we know that the
slower the inhibitor concentration approaches the critical point
[Y] cr, the more noticeable the fluctuations affect macrosystem
dynamics. Since the bifurcation discovered in this work is of
fluctuation nature, the ratioT∞/Tm is expected to increase on
condition that the rate of [Y] approach to [Y]cr slows down.
This rate is controlled by the constantk1. A decrease ink1 does
not change the position of the Hopf bifurcation point on the
bifurcation diagram, but the oscillation period increases at the
expense of R1 reaction slowing down, and the relaxation
waveform of the oscillations becomes more pronounced (i.e.,
the ratio of time intervals at which [Z] grows rapidly and
decreases slowly within a single period is increased). Figure
12 presents the dependencies ofT onkX for two different values
of k1. Whenk1 decreases by a factor of 4 (from 0.2 M-1 s-1 to
0.05 M-1s-1), the ratioT∞/Tm becomes nearly twice as much,
growing from 2 to 3.8, while the critical constantkcr (kcr = 2.8
s-1) remains unchanged.

5. Conclusion

With the theoretical method of the PCA, the bifurcation of
oscillation frequency multiplication has been found at a decrease
in the constant of mass exchange (or coupling strength) between
a large number of identical stochastic microoscillators-Orego-
nators under their turbulent stirring. Either with a decrease in
the coupling strength between MOs or with the reduction of
the spatial size of MV-MO, the oscillation frequency of the
entire system of coupled MOs starts to grow, and at some critical
point, the rate of this growth changes in a threshold manner as
in the nonequilibrium phase transitions or in the equilibrium
phase transitions of the second order. At high mass exchange
constants and at rather large sizes of the whole system, when
the productN0Vc is large, the oscillation frequency of the system
of coupled stochastic MOs coincides with the oscillation
frequency of the deterministic macrooscillator.
A mechanism for the oscillation frequency multiplication

related to the stochastisity of a MO has been suggested.
Frequency multiplication occurs when the coupling strength
between MOs is neither too large nor too small. When the mass
exchange constantkex is large, so thatkex > γi, whereγi are the
rate constants for reactions R1-R5 presented in Table 2, then
the “individuality” (or “stochastisity”) of microoscillators is

dampened and they oscillate in-phase with the most probable
frequency=T0-1. At too low of a rate of mass exchange, when
kex < γi, the coupling between MOs disappears and chaos
follows; no oscillations of the entire system are observed in
this case. The entire coupled system exhibits the largest
sensitivity to the coupling strength at the critical pointkcr where
the mass exchange constantkX has the same order of magnitude
as the constantγ3 (γ3 ) k3[A]) of the activator exponential
growth.
There exists a similarity between the experimentally ob-

served14 and theoretically found bifurcation of frequency
multiplication. In experiment,14 the spontaneous changes in the
frequency of the initial oscillations in the AOT-BZ reaction
increase with micellar radius decrease. A spontaneous increase
in oscillation frequency may occur due to the structural
transformations of microemulsion during the reaction or due to
a change in the rates of chemical reactions when bromine is
stored in the organic phase. In the experiments on stirring
effects,21we showed that an increase in [Br2] results in a slower
approach of [Br-] to the critical concentration [Br-]cr and, hence,
an increase in the relaxation wave form of oscillations. The
latter, as we have shown, enlarges the changes in oscillation
frequency as a result of the frequency-multiplying bifurcation.
A real AOT-BZ reaction, naturally, is more complex than the
system of coupled stochastic Oregonators and there may exist
another reasons leading to spontaneous multiplication of oscil-
lation frequency.
We have not considered yet such problems as (i) the effect

of polydispersity and the fractal nature of the micellar clusters
on the bifurcation of frequency multiplication, (ii) the behavior
of the stochastic Oregonator atVcNA f 0 andN0 f ∞, (iii) the
behavior of the system atkex f 0, and (iv) the simulation of
more complex BZ reaction models and peculiarities of the AOT-
BZ reaction.
Quite a separate class of problems emerges when the cells

of the PCA lattice are not stirred. According to our preliminary
results, either the stationary Turing structures (described in detail
by Becker and Field28) or the synchronous oscillations of all
coupled stochastic MOs may arise under the oscillatory regime
of the Oregonator model in the unstirred distributed system.
The transition from the synchronous oscillations to the stationary
structures occurs as soon as the constantskX andkY of mass
exchange decrease. Thus, the PCA method applied to the
stochastic distributed Oregonator makes it possible to study the
competition between the Hopf bifurcation and Turing bifurcation
in the presence of fluctuations. It is interesting to note that if
one turns on the “stirring” procedure when the Turing structures
are formed, the oscillations with the multiplied frequency (Tm)-1

appear in the assembly of coupled stochastic Oregonators.
The effect of oscillation frequency multiplication observed

in this work may probably be met not only in the assembly of
stochastic Oregonators but also in any other large assembly of
stochastic oscillators. In this case, analogous effects may
emerge in such assemblies of excitable cells as brain neurons
or heart cells because the activity of isolated excitable cells (for
instance, neurons18) is similar to the operation of a stochastic
oscillator.
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Figure 12. The dependencies of the oscillation periodT on the mass
exchange constantkX in the stochastic Oregonator model ata) 0.3 M
and various values of the constantk1: ([) k1 ) 0.2 M-1 s-1, (9) k1 )
0.05 M-1 s-1. The remaining constants of the Oregonator are as in the
basic set. PCA parameters:N0 ) 322, VcNA ) 4 × 104 M-1, kZ ) 32
s-1, kX ) kY, StepDif) 0.01 s forkX < 30 s-1, StepDif) 0.001 s for
kX > 30 s-1, StepMix) 0.05 s,LeV ) 3.
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(15) Jóhannsson, R.; Almgren, M.; Alsins, J.J. Phys. Chem.1991, 95,

3819.
(16) (a) D’Aprano, A.; D’Arrigo, G.; Paparelli, A.; Goffredi, M.; Liveri,

V. T. J. Phys. Chem.1993, 97, 3614. (b) Koper, G. J. M.; Sager W. F. C.;

Smeets, J.; Bedeaux, D.J. Phys. Chem.1995, 99, 13291.
(17) Epstein, I. R.; Showalter, K.J. Phys. Chem.1996, 100, 13132.
(18) Abarbanel, H. D. I.; Rabinovich, M. I.; Selverston, A.; Bazhenov,

M. V.; Huerta, R.; Sushchik, M. M.; Rubchinskii, L. L.Usp. Fiz. Nauk
1996, 166 (4), 363.

(19) Field, R. J.; Noyes, R. M.J. Chem. Phys. 1974, 60, 1877.
(20) Vanag, V. K.J. Phys. Chem.1996, 100, 11336.
(21) Vanag, V. K.; Melikhov D. P.J. Phys. Chem.1995, 99, 17372.
(22) Bendat, J. S.; Piersol, A. G.Random Data Analysis and Measure-

ment Procedures; John Wiley & Sons: New York, 1986.
(23) Tachiya, M. InKinetics of Nonhomogeneous Processes; Freeman,

G. R., Ed.; 1987, Wiley: New York, p 575-650.
(24) Almgren, M.AdV. Colloid Interface Sci. 1992, 41, 9.
(25) Gehlen, M. H.Chem. Phys. Lett.1993, 212, 362.
(26) Genkin, M. V.; Logunov, I. V.; Davydov, R. M.; Krylov, O. V.

Kinet. Katal. (Rus)1991, 32, 336.
(27) Rovinsky, A. B.J. Phys. Chem.1987, 91, 4606.
(28) Becker, P. K.; Field, R. J.J. Phys. Chem.1985, 89, 118.
(29) Mazzotti, M.; Morbidelli, M; Serravalle, G.J. Phys. Chem.1995,

99, 4501.
(30) Horsthemke, W.; Lefever, R.Noise-Induced Transitions; Springer

Series in Synergetics, Vol. 15; Haken, H., Ed.; Springer: Berlin, 1984.
(31) Nicolis, G.; Prigogine, I.Self-Organization in Nonequilibrium

Systems; Wiley: New York, 1977.

7084 J. Phys. Chem. A, Vol. 101, No. 38, 1997 Vanag


