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The method of probability cellular automaton (PCA) has been used to simulate turbulent stirring, molecular
diffusion, and the reactions of the stochastic Oregonator in each cell of the automaton and to model the
bifurcation of oscillation frequency multiplication discovered earlier in the Belou@abotinsky reaction

in water-in-oil Aerosol OT microemulsion. At large constants of mass exchange between the adjacent PCA

cells key, the system demonstrates oscillations whose shape and p&gpdré fully identical with those
obtained from the solution of the ordinary differential equations. Whgdecreases, the periddshortens
and reaches the limil, atkex < k. The smaller the volum¥, assigned to a PCA cell and the slower the
system’s approach to the critical concentration of the inhibitor [Brthe higher the ratiol/T. The
stochastisity of microoscillators is the source of new frequencies.

1. Introduction

The investigation of the BelousexZhabotinsky (BZ) reac-
tion! occurring in water nanodroplets of the water-in-oil AOT
microemulsion in organic media (AO¥ sodium 1,4-bis(2-
ethylhexyl)sulfosuccinatéppens new possibilities for studying
the effect of concentration fluctuations on nonlinear chemical
reactions because the amplitude of fluctuations in micro- and

nanovolumes (represented here by water nanodroplets of theXedrettably,

AOT microemulsion) becomes considerably larger. From the
physical point of view, water-in-oil AOT microemulsion is a

multitude of water nanodroplets surrounded by a monolayer o
AOT molecules whose long hydrophobic tails are directed to

tion.”8 This is confirmed by the electrooptic Kerr-effect and
electric conductivity measurements (the conductivity, for ex-
ample, displays percolation transition, changing over many
orders of magnitude). Despite a relatively large size of
percolation clusters, the microemulsion remains optically trans-
parent until the value,, reaches the cloud poing{ = 0.5~

1), beyond which phase separation into two phases occurs.
the detailed structure and dynamics of AOT
microemulsion loaded with concentrated sulfuric (or other) acid
(0.1-0.6 M) where the BZ reaction runs is not known.

¢ Therefore we shall base this study on the structure and dynamics

of an AOT microemulsion where the water nanodroplets are

an organic solvent while the polar headgroups are directed loaded with low concentrations<0.01 M) of some substances

toward the water core of a micelte. The size of a micelle (a
micelle is a water corg- a wall made of surfactant molecules)
is independent of the concentration of a micelle in the micro-
emulsion and is determined by the rati@)(of the molar
concentrations of water and ACT.
o = [H,0]/[AOT] (1)
The radius of the micellar water cordRy) is estimated
approximately &%5
R, (innm)=0.17% (2)
The concentration of micelleCf) is proportional to the
volume fraction of the aqueous pseudophasg (

Cin = &u/(ViNa) @)

whereV, is the volume of the micellar water coMd;,, = 47R.%/

3, Na is the Avogadro number, and
¢w = VW/ (Voil + Vw) (4)

whereV,, is the volume of the aqueous phase which should be

added to the volum¥,; of the AOT solution in organic solvent

to prepare the AOT microemulsion.

When C,, exceeds some critical concentration, the micelles
start forming clusters, which at rather high become percola-
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at neutral pH.

According to these considerations, mass exchange between
water nanodroplets of a dilute microemulsion occurs as a result
of fusion—fission of the micelleS. On average, each 100th or
1000th collision of the micelles leads to fusion, and the
bimolecular constant of the mass exchange rate is estimated as
1 x 10’ M~1s7145 |tis suggested that as a result of the fusion
of two micellar water cores their content is mixed completely,
after which the micelles are separated. In micellar clusters, the
micelles keep their closed structthe@nd the constant of a
particle jump (walk frequency) between micelles of the same
cluster (intracluster displacement) is estimated asA{2x 10°
s 110 Mass exchange between clusters is a very slow process,
by 2—3 orders slower than the rate of mass exchange between
separate micelles. All reagents and most intermediates of the
BZ reaction are water soluble. Thus, the AOT-BZ reaction may
be considered to run mostly in water nanodroplets of AOT
microemulsion.

While studying the ferroin-catalyzed AOT-BZ reaction, we
discovered some new effects. Among them were the depen-
dence of oscillation area in phase space on the size and
concentration of water nanodroplétsxtraordinary high pho-
tosensitivity of the AOT-BZ reactio# the square dependence
of the rate of autocatalytic growth in [HBgPand the oxidized
form of the catalyst, [ferriin], on [NaBrg),’® and a new
bifurcatiort* called by us the frequency-multiplying bifurcation.
This bifurcation, displayed as a spontaneous multiplication of
oscillation frequency by 2, 2.5, 3, or 4 and as a simultaneous
sharp decrease in oscillation amplitude, occurs only in micro-
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TABLE 1: Dependence ofL (Size Range of the Randomly Chosen Squares) aridi (Number of Times the Squares of a Given
Size Range Were Sampled) at a Single Time Step on the Stirring Levelgr, at Ng = 642, Ng = 322, and 1¢&

Lev NL
No =16 x 16 No=32x 32 No =64 x 64 L No=16 x 16 No =32 x 32 No =64 x 64
1 64—-56 1
1 2 32-26 1 4
1 2 3 16-10 1 4 16
2 3 4 8-4 8 32 128
3 4 5 4-2 64 256 1024

emulsions with a high volume fraction of the aqueous is assigned to have a volum& and linear sizd, = (V¢)'3.
pseudophase,, (wheng¢, = 0.05). At such values oby in The valueV, is used to determine the probability of bimolecular
the AOT microemulsion, the percolation clusters are ford€d, reactions being simulated independently in each elementary cell.
and the viscosity of microemulsion sharply increases, reaching The lattice is self-closed, i.e., the opposite sides of the lattice
10 cP and moré® We suggestéd that the clusters formed in  are assumed to be adjacent.
microemulsion and loaded with the reagents of the BZ reaction  Block “Diffusion”. Molecular diffusion is given by the
may be regarded as the stochastic microoscillators (MO), i.e., probability W(m,Kr,s) to find m andk particles at the moment
the oscillators whose dynamics are considerably affected by thet + StepDifin two randomly chosen neighboring cells (in our
smallness of the amount of particles in microvolume (MV), this case, the “central” cell has eight neighboring cells; coordination
fact being expressed both in the enhancement of inner fluctua-number= 8), if at the moment they contained ands particles
tions and in the probability character of chemical reactions of this sort, whereStepDifis the constant time step which
running in MVs. We also suggested that the frequency- separates successive operations of diffusion modeling (procedure
multiplying bifurcation is connected with the specific interaction or block “diffusion”), then
in the assembly of diffusionally coupled stochastic MOs.
A great number of articles is devoted to the study of coupled W(m,Kr,s) = (r + 9)l/(k'm!) (1/2)k(1 —-12" (5
oscillators (see, for instance, the review by Epstein and
Showaltet’). Fewer studies deal with the interactions of chaotic The intensity of mass exchange (or, which is the same, of the
or stochastic oscillators. These studies are mostly restricted tomolecular diffusion) is regulated either by the vastepDifor
the consideration of two coupled oscillatéfsWe are unaware by the value KD)(No) of randomly chosen pairs of adjacent
of any works devoted to the interaction of many stochastic MOs, Cells at one time steftepDif The value oND did not exceed
especially under the conditions of their turbulent stirring. 0.5. The ratioND/StepDif determines the constant (or fre-
The aim of the present work is a theoretical study of the AUeNcy)kex of particle jump into an adjacent céf.
oscillatory AOT-BZ reaction which we represented as a sum . .
of many diffusionally coupled stochastic MOs under their kex = ND/StepDif 6
turbulent stirring. As a model of the BZ reaction, the Orego-
nator model® was chosen being the simplest one. Thus we
shall consider the assembly of stochastic Oregonators. 2
This system relates to most complex systems of the “reac- Do = Key e @)
tion—diffusion—convection” typet fluctuations. To solve such . )
systems we developed the method of the probability cellular 1N® Oregonator model uses three independent variables X, Y,
automaton (PCA$® With the PCA method, in which the Monte ~ @1d Z: X = HBrO; is an activator, Y= Br- is an inhibitor,
Carlo procedure was applied, we were able to explain the stirring 2nd Z s a catalyst represented either cerium(1V) ion or ferriin
effect discovered earlier in the closed BZ reactiand to prove  (F€(Pheny®”, phen= phenanthroline). Each of these particles
that the average velocity of the motion of the turbulently stirred @S its own diffusion coefficient. In the PCA this is accounted
media affects the behavior of nonlinear chemical reactions fOr by using three various numbersND (NDy, NDy, andND;)
proceeding in the media. This effect emerges at the level of 21d by independent application of the “diffusion” procedure for
the interaction between hydrodynamic fluctuations in the ©ach variable at each time stgfepDif e
velocities of liquid elements (microeddies) and large-scale  BlOck “Stirring” . Turbulent stirring (block “stirring”) is
concentration fluctuations in key intermediates of the reaction Performed in regular intervals of tim&{epMij by selecting a
because the spatial characteristic lengths of these fluctuationsSquarek x Lin size £ < N) in an arbitrary place of the lattice
nearly coincide for such liquids as water. In this work we used Nt times and by randomly pairwise rearranging the square’s
the PCA method to study how the coupling strength (mass fourqu_adrants. The stirring intensity is given by the time step
exchange coefficient) between MVs and the spatial size of Mvs StéPMixand a numbetey. The larger the.ev and the smaller
affect the oscillation frequency of the whole oscillator ~ the StepMix the higher the stirring intensity. For eatie

Oregonator assembly as a unified system under turbulent stirring."Umber there are the corresponding numbgrandL presented
in Table 1. For instance, for the lattice 32 32 in size and

2. PCA Method for the Oregonator Model Lev = 3 and with each time steptepMix a square of the size
L x L, whereL randomly assumes any of the values of 32, 30,

A detailed description of the PCA method for the stochastic 28, or 26, is chosen one time, the squares of the size from 16
Oregonator can be found elsewhéte Here we shall only x 16 to 10x 10 are chosen four times, and the squares of the
briefly outline the principles of the PCA functioning and some size from 8 x 8 to 4 x 4 are chosen 32 times. A detailed
innovations made. The PCA independently models three description of the “stirring” procedure is given elsewhé&te.
processes: (a) molecular diffusion, (b) turbulent stirring, and  The intensity of macromixing is characterized by the mixing
(c) chemical reactions. In this work all the processes are mostly rate constankyx determined in the experiments by mixing two
modeled on the lattice consisting Nf = N2 (N is an integer) equal parts of the lattice, whose cells are in different statss
= 322 or Np = 64? equal elementary cells. An elementary cell the initial moment of time, whera is the number of particles

The valuekey relates to the diffusion coefficierdg:2°
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of the same sort; for exampla,= 0 for the cells of one half
andn = 200 for the cells of the other half of the lattice. The
mixing rate constantknx was determined by fitting the
experimentally obtained dependenced ¢ gef) on time with
the expression

(00" — Oeq)) EXPEKeyt) ®)
whereo? is the dispersion determined by the formula:
nmax
2 __ 2
o°=—>% (n— " N(n) 9)
o=
Nmax
M= —% n N(n) (10)

on=

N(n) is the number of cells containing particles of a given
sort, oo? is the dispersion at the initial moment of tine= 0,
oed is the equilibrium value of the dispersion tat> «, and
oedd = MO The constant&mix are determined by the linear
regression methddwith R-squared values not less than 0:95
0.98. Such highR-squared values are explained by the fact
that the dependencies of% — oef) on t are practically the
straight lines in the coordinates In(o? — oef). Typical
dependencies o — oef) ont at variouskex are presented in
the Supporting Information in Figure 1S.

The valueknix depends on the rate of micromixing (diffusion)
determined by the valuiex and on the stirring rate determined
by the valuesStepMix and Lev. When the rate of cell
rearrangement is high enough, the constantis completely
determined by the diffusion, so thkhix = kex. The depend-
encies okmix on kex for various stirring leveldev are presented
in Figure 1A. The “stirring” procedure may become the limiting
step of macromixing at small&tepMixandLev. The depend-
encies ofkmix on StepMixat variouskex andLev are shown in
Figure 1B. It can be seen from Figure 1B that StepMix
decreases, the valugx tends to the limit that equaley for
the corresponding curve.

This model of the cellsMOs coupling somehow resembles
the model of global coupling when each oscillator is coupled
with all the rest. When the rate of macrorearrangement of the
cells is great in comparison witt, the probabilities averaged
over some long time interval (for example, over the oscillation

period) that mass exchange between a randomly chosen cell

and any other of th&|, cells occurs are equal. The difference
between this model and the global coupling is in the fact that,
for this model, at a given moment of tiniehe mass exchange
is possible only with the adjacent cells, which represents the
facts.

Block “Chemistry” . Five chemical reactions of the Orego-

nator model running independently in each elementary cell were

simulated by the Monte Carlo method. At each time stép
differs from StepDif and StepMiy for every cell, a random
number6d (6 € [0,1]) was generated. If the relatigh < W
held, thei-th reaction was realized, whevd is the probability
that a number of particles of the corresponding sort containe
in an elementary celln) changes by the stoichiometric coef-
ficient of thei-th reaction in the cause of the reaction being
realized.

Table 2 presents the reactions of the Oregonator model, their

first-order constantg; which control the reactions in nano- and
microvolume<£%-23and the corresponding reaction rates and their
probabilitiesW. Since the discrete variables, ny, andng,
whereny, ny, andnz are the numbers of particles X, Y, and Z,
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Figure 1. The dependence of the macromixing constaptat various
stirring levelsLev for the lattice of sizéNg = 322 on (A) the constant
of mass exchangk.x between the neighboring cells and (B) on the
time step StepMixat various constant&.,. PCA parameters: (A)
StepMix= 0.05 s,Lev = 4 for curve 1,Lev = 3 for curve 2Lev = 2

for curve 3; (B) for curve 1Lev = 3 andkex = 32 s, for curve 2Lev

= 2 andkex = 32 s, for curve 3Ler = 2 andkex = 10 s

respectively, contained in an elementary cell with the volume
V., may change only by the whole number, then the coefficient
g is taken to beg = 0.5, and reaction R5 is interpreted as
follows:

n,—n,—2
(RS)
n—ny,+1

with the probability of its run beinyVs/2.
Time stepr was determined for each discrete moment of time
from the relation
7= 0.1/max{q;} (12)
wheregq; are the rates of thieth reactions presented in Table 2,

while the values ofk, ny, andn; are taken from the preceding
moment of time. The step depends on the oscillation phase

gand varies, as a rule, from 19to 102 s. As the number of

particles in the cell increases in the cause of the reaction, the
step 7 decreases, and vice versa. The main characteristic
parameters and constants of all three processes modeled by the
PCA are summarized in Table 3.

3. The Values of Model Parameters

Our system’s behavior is affected by many parameters. These
are the reaction rate constants of the Oregonator model, mass
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TABLE 2: Reactions of the Oregonator Model, Monomolecular Reaction Rate Constants)), Monomolecular Reaction Rates
(1), and Corresponding Probabilities (V)2

no. reactions yi, St g, s? Wi

R1 A+Y —X ki[A] = 0.02-0.06 Ki[A] ny Ki[A] nyz

R2 X+Y—0 kz/(VcNA) (k2/(VCNA))nan (kg/(VCNA)) NxNyT

R3 A+ X —2X + 27 kiA] = 2—6 k™ = KafA] Ny Ke[A] nxt

R4 X+X—0 k4/(VcNA) (2k4/(VCNA))n><(n>< - 1) (2k4/(VCNA))n><(n>< - 1)77
R5 Z+B—gY ke[B] = 1 ks[B] Nz ko[BI Nzt

aA = BrO;~, B = malonic acid, X= HBrO,, Y = Br—, Z = catalyst in oxidized state, g is the stoichiometric factps 0.5, V. is the volume
assigned to the PCA elementary céll, is the Avogadro number; is the time step assigned to a single cycle of the program. Basic set of the
constantk: kk=02Mls L k=2x 1M 1slk=20MtstLk=2x 1M 1sLk=1M"1sL[Bl=b=1M;[A] =0.3Mor
[A] =0.1 M.

TABLE 3: Summary Table with the Main Parameters and Characteristics of All Three Processes Modeled by the PCA

parameters molecular diffusion turbulent stirring chemical reactions
time step through which a corresponding operation block is fulfilled StepDif StepMix T
number of operations in a block ND x N Lev aNo

2N
probability of a single operation W(m,Kr,s) Ws W,
pseudo-first-order constants of the process rate Kex Kmix Yi

aParametersev, N_, andL are given in Table 1. Probabilitiés and constantg; are given in Table 2N, is the number of elementary cells
in square PCA’s latticeq is the number of chemical reactions modelgds 5 for the Oregonatori. is the reaction numberi = 1, ...,q. The
probabilityW(m,Kr,s) and time step are determined by formulas 5 and 11, respectivlyis the probability that at least two out of four quadrants
of a randomly choseh x L square will be randomly pairwise rearranged during a single operatiors 3/4. The parameterStepDif StepMix
ND, No, Lev, yi = f (ki,Ve), V., andk were varied in the PCA model, but all of them remained constant through one computer experiment. The
parameterey, kmix, andy; determine the main kinetic characteristics of the processgis given by formula 6.

exchange constante, (or diffusion constantdy) for each Dy = prkiCr(CNA) 2 = piky (3¢,/4m) " I(R,N,) (13)
variable of the Oregonator model, and the characteristics of
macromixingStepMixand Lev integrated together Wltkex in For the characteristic values p'ﬂ(d’ Ru, and¢w (pfkd =10"—

the constankmix. Since our model is based on the AOT-BZ 1 M~1s1, R, = 2-5nm, andp, = 0.1), theDg is found to
reaction, we turned to the real system to estimate all the possiblebe (1 x 1078—2 x 1077) cn¥/s.
values of these parameters. For the AOT-BZ reaction catalyzed by ferroin, the following
The diffusion coefficients undertake considerable changes in Obstacle may prove to be significant. It is kngihat the
comparison with the homogeneous aqueous media. In AOT €xchange of phenanthroline metallocomplexes between AOT
microemulsion, the diffusion of the water-soluble particles Micelles occurs at each collision of the micelles, pes- 1 for
localized in micelle water cores occurs as a result of fusion ~ferroin. This is explained by phenanthroline solubility in long
fission of water nanodroplets diffusing in the organic phase. fatty ends of AOT molecules. The exchange of small water-
The characteristic constark, of mass exchange between Soluble molecules and ions, like HBf@nd Br-, occurs at each

micelles is determined by the expression 100th collision of mice”es, |epf = 0.01 for HBrG& and Br.
Let us denote the constaris and Dy for particles X, Y, and
Kex = PkCin (12) Z askx, ky, kz and Dx, Dy, Dz, respectively. Then for the

Oregonator model, in which Z is ferriin, we can write that

whereky is the constant of the diffusion-controlled reactions,

Cm is the concentration of micelles in the whole volume of Dy~ Dy <D, (14)
microemulsionpx is the coefficient determining which part of

the collisions between micelles leads to mass exchange. Forand

the characteristic values @f, ks, andCp,, (pr = 0.001— 1, ky

= 10° — 10°°M~1s71, andCp = 1075 — 1072 M), kex is equal ke ~ ky <k; (15)
to 13—10° s1. With the formation of large clusters, the
constantky decreases by-12 orders of magnitude due to an It is knowr?”28that with relationships 14 in the Oregonator

increase in microemulsion viscosity and the valiygis replaced model, Turing structures may arise from the spatially homo-
by the concentration of cluste€ and, accordingly, decreases geneous unstirred stationary state. However, because of small
by 1 — 3 orders of magnitude, whilgx becomes rather values ofDx, Dy, andDz in the AOT-BZ reaction, the size of
indeterminate because of the uncertainty in cluster structure andthese structures should be comeasurable witmland hence,

in the mechanism of mass exchange between clusters but igshey may be hardly observable.

certain not to growprkg < 10°P M~1 71152425 Hence, with For single micelles, the valu€,Na may vary from 20 to
cluster formation, the constaki may decrease by-15 orders 1000 M. If clusters are formed by 1661000 micelles, the

of magnitude, andkex = pksCc = 1072—10° s~1. Therefore, valueV Na may vary from 2x 10°to 2 x 10° M~1. Hence, a

the valuekex should vary within the broad limits in our computer  probable variation range &N, lies between 1¥and 16 M1,

experiment. A characteristic time of mixingtmix = 1/knix, for aqueous
Sincekex is connected witlDg by relation 7, wherd, may systems in small laboratory reactors ranges from 6.1 ¢ at

be regarded as the average distance between micelles (ostirring rates from 200 to 1000 rpm. In viscous media, this

between clusters in the case of their preserge),(CNa) 13, time, naturally, becomes longer and may reaeti@ s. The

and thenDy may be estimated from eqs 3, 7, and 12 as frequency-multiplying bifurcation in the AOT-BZ reaction was



7078 J. Phys. Chem. A, Vol. 101, No. 38, 1997 Vanag

TABLE 4: Ranges of the Main Parameter Values for AOT Microemulsion and the Corresponding Parameters for the PCA
Model

range of parameters Kex, S VcNa, M1 Kmix, S
for AOT microemulsion estimated by the experimental data “2300° 106-10C° 1-10
for the PCA model studied in this work 0-200 7x 10— 1 x 10° Kmix = Kex
in which the bifurcation valuek.x = k are discovered 16 (1100kc)-7® ix = Kex
discovered at high enough stirrity. Therefore in our computer 1900 kx=505" ky=25s"

experiment, we shall also use high stirring intensities at which
the process of macromixing is limited by the mass exchange "’0}
constant and the equalitgnix = kex is fulfilled. The main R
characteristic constants of AOT microemulsiég,(VcNa, and g 104 \ Y
kmix), determining the amplitude and frequency of concentration

fluctuations, are summarized in Table 4. 1

The reaction rate constants of the elementary steps for the
AOT-BZ reaction notably differ from those for the BZ reaction 01
proceeding in the homogeneous aqueous medidhus, the
constants in the Oregonator model may also differ from the
accepted one¥. In this work, we use the basic set of the Figure 2. Kinetic curves for vgriableﬁhyl]and (hzOobtained _by the
constants presented in Table 2. The concentration of A is aPCA method for the stochgstlc Oregonator model for various mass

. . exchange constanks. A basic set of the Oregonator model constants
varying parameter ranging from [AF a = 0.02 M toa=1 was used ah = 0.3 M. PCA parametersy = 322, V.Ny = 4 x 10*
M. The interval 0.02-1 M involves the Hopf bifurcation point  M-1, k, = 32 51, ky = ky, StepDif= 0.01 s,StepMix= 0.05 s,Lev
for the model parameters used. With the given set of constants,= 3.
the rate of Y particles’ appearance in reaction RbE& 1 s71)
is much larger than the rate of their disappearance in reaction 4.1. Evidence for Frequency-Multiplying Bifurcation.
R1 (ka < ksb). Therefore the rate of a decrease and approach Kinetic Qurves. Notlcggb!e differences in the behavior of the
of [Y] to [Y] & = ake/ks is fully determined by the rate of reaction stochastic and deterministic Oregon_ator emerge when _the values
R1. Another peculiarity of the basic set of constants is the Of kexfor X:and Y become smaller, i.e., at a decreaskyiand

similarity of the kinetic curves [X] versusand [Z] versust. ky. Later, if not noted specifically, we shall use equal values
of kx and ky, and write only kx meaning thatkx = ky.

Characteristic kinetic curves for variablésydand [hyat
variouskx are shown in Figure 2. Variabldsy[] hy[] and
To choose the parameterwe first obtained a bifurcation (mzOdetermined in the PCA model by formula 10 relate to the

diagram by solving numerically the system of ordinary dif- Variables [X], [Y], and [Z] as
ferential equations (ODE) for the Oregonator at vari@us
Typical shapes of kinetic curves obtained from the solution of By = IXIVeNa, - Iy D= [Y]VN,, - 0,0= [Z]VN, (16)
the ODE for various and the bifurcation diagram are presented
in the Supporting Information in Figures 2S and 3S, respectively.
It follows from the bifurcation diagram (Figure 3S) thataak
0.053 M, the system remains in the stationary state, white at
> 0.054 M, the system exhibits sustained oscillations. The
dependence of the oscillation peridd (obtained from the
solution of the ODE) ona is presented in the Supporting
Information in Figure 4S. An increase &from 0.054 to 0.1
M is followed by a decrease in the minimum value p]of
the oscillating value of [X] from 1P to 107 M and an increase
in the period from 40 to 75 s. Asgrows further, [X}nn starts
growing while the periodly starts shortening, in particuldp My L, > My (17)
=41.7 sam= 0.3 M. PeriodT, passes through the maximum v min v
at the pointa = 0.1 M. The data of Flggres 284S are used wherey g = [Y] VeNa and [Y]r = aks/k. (critical concentra-
as the reference data for the results obtained by the PCA methodjgp, [Y]« is determined from the equality of the rates of reactions
The bifurcation diagram resulting from the solution of the R2 and R3). As is known, autocatalytic multiplication of X
stochastic Oregonator by the PCA method at high valuds,of  molecules in the Oregonator model, which is the necessary
(kex > 30 s71) completely matches the diagram obtained from condition for oscillations, starts when [Y} [Y].. Relation
the solution of the ODE. The dependence of the oscillation 17 testifies to the presence of highly inhomogeneous states in
period T, on a (shown in Figure 4S) also reproduces well the the system of poorly coupled MOs.
dependence of, on a, thoughT.,, is somewhat smaller thahy To follow the origin of such extraordinary high-frequency
atalla. The symboll., denotes the maximum oscillation period oscillations, we determined the dependence of the oscillation
T at kex — . For the basic set of the Oregonator model period and amplitude on the mass exchange congtanon
constants and &tNa > 10° M1, the periodT ceases to depend  the cell volumeV,, and on the number of celld, of the lattice.
on key at kex > 50 s With the growth inV,, the difference The ranges of thée, and VcNa values, characterized by the
betweenT, and Ty disappears. In view of the bifurcation most considerable variations in the periddand oscillation
diagram and the dependence Bf on a, two values of the amplitude, are given in Table 4. Notice that these ranges agree
parametera were chosen in the oscillation area for further well with the analogous ranges estimated by the experimental
studies by the PCA methoda = 0.1 M anda = 0.3 M. data.

0 20 40 60 80 100 120 140 160 180
Time/s

4. Results and Discussion

whereV, is the volume ascribed to a PCA cell. At high (kx

> 30 s1), the wave shape of oscillations obtained by the PCA
method completely matches the wave shape of reference
oscillations resulting from the ODE solution. At the same time,
at low kx (kx < 10 s'1), the amplitude and oscillation period
get smaller, and the shape of oscillations changes also, for
instance, oscillations of the valugh;[0assume the shape
resembling sinusoidal oscillations (Figure 2). In addition, at
smallky, the relation abnormal for the oscillatory regime starts
to hold:
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Figure 4. The dependencies of the oscillation periddon VcNa.
Parametersa = 0.3 M kx = ky = 3.2 s'%; the remaining parameters
are the same as in Figure 3.
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exchange constark in the stochastic Oregonator model at various ) ) o
volumesV; of PCA cell. A basic set of the Oregonator model constants Figure 5. The dependencies of the maximum and minimum values of

was used at (Ap = 0.3 M and (B)a = 0.1 M. PCA parametersN (hz0and My Oon kx in the stochastic Oregonator modelaat= 0.3 M
=32, (H)VINAa=5x 1M7L, () V.Na =1 x 10° M2, (M) VcNa andV.Na = 1 x 10* M~%; the remaining parameters are the same as in
=4x 1ML (A) VINA =2 x 10° ML, (@) VeNa = 1 x 10# M1, Figure 3.
kz = 32 s, kx = ky, StepDif= 0.01 s forkx < 30 s* andStepDif= ] ]
0.001 s forkx > 30 s%, StepMix= 0.05 s,Lev = 3. observed. The comparison of parts A and B of Figure 3 also
) ) shows that the value o& has hardly any effect on the
TABLE 5: Dependencies of the PeriodsI., and Ty, the dependencied(kx)
Ratio T./Tm, and the Critical Constant of Mass Exchange . . . .
Rate kg on the Molar Volume VN, of a PCA Cell for the The differenceT — Tn, which can be defined as the order
Stochastic Oregonator Model with the Basic Set of Constants ~ Parameter, depends ég near the critical poinker at kx > ker
ata= 0.3 M as
VcNa x M Ker X S To, S Tm S Teo/ T T_T) 0Ok 8 18
1x 104 5.77 34 11.3 3 ( m 0 (ke = ko) (18)
2 x 10 3.9 34.5 13.6 2.5
4§ 106 27 35 17.5 2 where 8 = 1/2. Such a dependence of the system order
1x 108 1.54 36 21 1.7 parameter on the controlling parameték (— ko) with the

2 PCA parametersNo = 32 x 32,k, = 32 5L, ke = ky, StepDif= tcrmcz_atl_ |ndefxt‘[é = 1/2 |§ tygmal f?jr fthe ethb_:!gm phaﬁe
0.01 s forkx < 30 s andStepDif= 0.001 s forkx > 30 s %, StepMix ransition of the second oraer and for nonequilibrium pnase

=0.05s, andey = 3. transitions®>3! The dependencies of (— T) on (kx — ket
at differenta andV.Na are given in the Supporting Information
Dependencies ofl on kx at Various V.Na. The depend- in Figure 5S.
encies of the oscillation perioflon kx at variousVNa, shown Dependence ofl on VN at kx = Constant. As follows
in Figure 3, demonstrate the threshold change§ mith the from Figure 3, at a value ofx such that 2< kx < 5.7, the
variation inky in the vicinity of some critical poink.. Figure threshold dependencies of the peribdn V., analogous to the

3 shows that the oscillation peridddecreases with a reduction  dependencies of on kx, may be obtained. Such an example
in kx, and as soon ds achieves a critical valul, it ceases is shown in Figure 4. One can also see from Figure 4 that the
to change and attains its limiting minimum vallig. Figure 3 period T tends to some limit at/;Na — . It is evident that
also shows that the smaller thgN,, the larger the decrease in  this limit is the periodTo = 41.7 s of the deterministic
the oscillation period. From the dependencies of the r&tio Oregonator.

Tm on VcNa and of the critical valud, on VcNa presented in Dependence of Oscillation Amplitude onkx. Similar to
Table 5 fora = 0.3 M, one can see that the smaller ¥Ad\,, the periodT, the oscillation amplitude undergoes drastic change
the larger thd../Ty andk,..  Since with a decrease in the volume at the critical point. Figure 5 shows the dependencies of the
V. of a cell the number of particles X, Y, and Z contained in it minimum and maximum values dfiyOand hz[Jon kx. The
decreases and the fluctuation amplitude becomes larger, we maynalogous dependencies for the other valuesaridV:Np are
suggest that fluctuations play a decisive role in the effect presented in the Supporting Information in Figures 6S and 7S.
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TABLE 6: Possible Sequences of the Stochastic Oregonator
Reactions Leading to the Dead-End Combinations of
Numbers ny, ny, and nz in an Isolated PCA Cell

4E-4

<{Y]>

reaction Ny ny nz reaction nx ny nz

2 R3 0 1 3
0 0 2 1
0 R2 1 1 1
0 0 0 1

3E-4 +
0
R1 0
1
0

OpR NP

2E-4 10 x <[X]>

A4 *

period T continues growing and achieves its limiting valie

only atkx > 2ks.. At kx < ke, the valued]lY] CandX] Cresume

their growth, which is caused by the large mass exchange

constank; = 32 s’ For the case ofz = kx = ky = kex that

will be discussed later, the valugl’] Cand[IX] Cdo not grow

OE+0 : ; E— at kex < ker. The considered peculiarities of the dependencies

1 10 100 of (IY] Dand IX] Don kx hold in the entire studied range of the

ky/s™ VcNa values from 16to 1® M~1. The dependencies &fy] O

) ) and X]Oon kx for various a and VcNa are given in the
Figure 6. The dependencies of th@y] Jand 1Q[X] Daveraged over

the oscillation period orkx for the stochastic Oregonator. All the Supporting Information in Figures 85 ar_ld 9s.
parameters are the same as in Figure 5. Dependence ofT on No. The experiments on how the

oscillation period depends on the total numbéy of the

As follows from Figure 5, a sharp decrease in the oscillation €lementary cells demand special care. The matter is that in the
amplitude [y Ghax — [y Ghin and MzGhax — [2Ghin), beginning Oregonator model (reactions RR4 + RS), where the
approximately akx < 10 s, stops at the critical poirke; = variablesny, ny, andnz are represented by whole numbers, there
5.7 51, and aky < ke, the oscillation amplitude becomes more ~@ré the dead-end combinations of these numbers at which the
or less stable. For the case presented in Figure 5, the ratio ofchemical reactions, proceeding in a cell, stop. Table 6 presents
the oscillation amplitude dt < ke to that atkx > ke equals some possible sequences of the reactions which lead to the dead-
10 and 5 forth,Cand My [ respectively. The smaller théNa, end combinations (0, 0, 1) and (0, 0, 0), where the numbers in
the larger the extent of the amplitude fall and oscillation the brackets equai, ny, andnz, respectively. The variations
frequency growth with théy decrease. Figure 5 also shows diven in Table 6 are highly probable for small-volume cells
that the abnormal inequality in eq 17 holds trueat< 8 s with few particles. If both the amount of celldy and cell
becauséhy g = 0.3 in this case. It is interesting to note that VolumeVc are small, the contribution of the cells with the dead-

the dependence of amplitude on oscillation frequency has a®nd combinations to the dynamics of the entire system grows,
linear character in the rande: < kx < 2ke. which shows itself in the extension of_ thg cheml_cal processes,

Dependence of the Substrate A Consumption Rate okx. and, consequently, in the longer oscnlatlon period. The only
Apart from the oscillation period and amplitude, in the range Way for a cell to leave a dead-end state is to perform mass
of kx € (Ken, 2ke) drastic changes occur with the values of [Y] exchange with the adjacent cells. If we enlarge the mass

concentration/M

1E-4

and [X] averaged over the oscillation period exchange constak, up to values of the order of (*)max Where
7 is determined by formula 11, then the influence of the cells
1 [, 0 At =T [0 in the dead-end states will be nullified even for snidyl
Y] = — mT dt= — Z (19) With the account of the peculiarities mentioned above which
° VN, mT & VN, proved to be significant only fokp < 1%, we found that the

oscillation period is independent of the amount of caljsfor

— m, O At t=nT [, 0 VcNa =4 x 100 M~ 1if Ny > 16 and forVc.Na =1 x 100 M1
X] 0= — o dt=— Z) (20) if No > 322 i.e., the period is independent of prodigV. if
m VN mT & VN, NoVc is large enoughiNogVcNa > 107 M~L. This relates both to

the periodT, and the periody,. Inthese experiments, the value
whereAt is the constant time interval through which the values Nowas enlarged up to 128 As Np was taken larger, the stirring
of all the system variables are written in the filB% At > 7) level Lev increased consequently t8band the equalitgmix =
andm is the number of the whole periods. The valuRs O kex was held.
and X]Odetermine the substrate A consumption rate in  The independence Gf, from Np at rather highNoV; allows
reactions R1 and R3, averaged over the period. Substrates Aus to say that the observed effect of oscillation frequency
and B serve as the source of energy, which supports oscillations.multiplication with a decrease in the coupling strength between
Since with the chosen constants of the Oregonator model theMOs is not a result of mere summing up of oscillations produced
substrate B consumption rate; = bkg[Z], is 2 times larger by few (10-100) stochastic oscillators with noncorrelated

than the substrate A consumption rate in reactiondg3; 2vs, phases. To the contrary, we may state that the emergence of
the dependence @fZ] Con kx adds no new information to that  high-frequency oscillations with the peridé results from weak
supplied by the dependence [§K] Con kx. synchronization of stochastic MOs.

Figure 6 presents the dependendiq Oand [IX] Jon k. Kinetic Curves of Dispersions. The dependencies of the
As follows from Figure 6, the valuefY] Oand X] Oreach dispersionsix?, oy2, andoz? on time justify the last statement.
stationary level akx > 2ke (2ker = 11.4 s°1), while atke < ky At kx > kg, for any phase of oscillations, the following

< 2k, the values(Y]Oand X]Ochange drastically (by  relationships hold trueoy? = k[ oy?2 = [yl andoz? = [l
approximately 2 times) which means a change in the energy This testifies to the equilibrium Poisson distribution of X, Y,
consumption (substrates A and B) by the system of slightly and Z particles among the cells and, hence, to the complete
coupled stochastic oscillators. It is interesting to note that at synchronization of MOs. Akx < k only the relationoz? =

kx > 2ker, when the value§lY] Oand([X] Ccease to change, the  [hzOholds, while the dispersionsy? and ov? start to depend
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Time/s stochastic Oregonator with the basic set of constards=a0.1 M and
Figure 7. The dependencies of the dispersiond andoy? (as ratios VeNa = 4 x 10° M™% PCA parametersNo = 2% kx = kv = kz = kex
ox?/mxCandov?/ My [) on time for the stochastic Oregonatormat 0.3 = 1000 s*.
M and k; = 0.05 Mis7%; the remaining Oregonator parameters are
the same as in the basic set of constants. PCA parametgrs: 32, 200 +
VCNA =4 x 10¢ Mfl, kz =30 gl, kx B k\( =16 gl, Stelef: 0.01 +
s, StepMix= 0.05 s,Lev = 3. To mark the oscillation phase, the 160 + . Th o+
dependencies ofix[) [y[) and [hz0Jon time are also given by thin oo+
lines. 120 + * +ﬁ-+:i +
< + .:* ey o+ ot

on the oscillation phase as is shown in Figure 7. The largest [_:*= £ F e Ty
difference between eitheryMyJor ov¥MyOand unity is 801 ++;£}+j*1 LB
observed in the fast phase of the autocatalytic growth of X t}f ‘@ﬂfﬁwj T
molecules ksa = 6 s1) and in the following fast phase of 401 SR AL R
Z-to-X conversionksb = 1 s'1). During the slow phase of the PRty
Y-to-X conversion (reaction RIga = 0.015 s1), the distribu- 0 T
tion of all the particles among the cells becomes Poissonian, 0 40 80 120 160 200
and hence, MOs at this time interval are synchronized. T/s

4.2. Scenario of the Emergence of Frequency-Multiplying Figure 9. The dependence of the subsequent peflad on the
Bifurcation. As Figure 7 shows, the dispersiog? is the first previous period, (next-period map) for the oscillations-f presented

of ox? andov? to deviate from the equilibrium value. On this in Figure 8 and for oscill_ation_s with the same Oregonator parameters

basis, we may suggest the following scenario for the oscillation (.)_S'm“lated_on ﬂf latt'celw'th the_fo_llowmg paranjetem n £62
S99 . kx = ky = kz = kex = 160 s'1, StepMix= 0.05 s,Lev = 3, VcNa = 4

frequency multiplication. Let all the MOs be synchronized, and . 1 -1,

let oy (> hy[dr (a slow phase of reaction R1) at the initial

moment of time. Then, as a result of the probability character and amplitude vary randomly. But as soon as the amount of

of the reactions in MV (reaction R1, in particular) and of the cells in a lattice increases, the oscillations acquire regular

equilibrium fluctuations in the number of Y particles/§ due character. Figure 9 presents the dependence of the subsequent
to the mass exchange between the neighboring MVs, the numbeiperiod T, on the previous period, for the oscillations shown
ny lowers randomly below the critical valuey[d; in few cells in Figure 8 and for the same model of oscillations but simulated

(or even in one cell). In these cells, the autocatalytic multiplica- on a 16x 16 cell lattice, wherdl,, is the duration of the-th
tion of X particles may start. If mass exchange consténts  period of oscillations. Figure 10S in the Supporting Information
andky are large, the critical fluctuatiomy < [hy[d, disappears,  shows the analogous dependenciedafi on T, for a larger
while in the opposite case, when these constants are smallvalue of V. (Vc:Na = 5 x 106 M~Y).
enough, autocatalysis starts to develop in the cells with critical ~ As follows from Figure 9 (and Figure 10), with a larger size
fluctuations (nuclei) and then spreads to the other cells which of the lattice, the dispersion of the perio@isand, hence, the
take part in mass exchange with the nuclei. Z Particles quickly stochastisity of oscillations decrease markedly, while the aver-
forming in these cells (in the cause of reaction R3) and Y aged value of the period§J,[] varies slightly. The depend-
particles resulting from them (in the cause of reaction) Rb encies ofTph+1 on T, obtained forN x N = 2 x 2 at various
not allow the average valugéyJoecome lower thafy[d. At VcNa show that the smaller thé,, the larger the dispersion in
this time interval (phase of reactions R3 and R5), the values T, under otherwise identical conditions. It may also be noticed
ox?/MxOand oy?/y Odiffer notably from unity. This mecha-  that the minimum value of the perict differs only slightly
nism explains why the oscillation period shortens wherky from the limiting value of the period, at equalVcNa. For
andky (kx = kv) decrease, but tells nothing about why the high- instance, it may be seen from Figure 9 tHBf) i = 20—25 s,
frequency oscillations occur with more or less regular period while it follows from Figure 3B thal,, = 24—25 s at the same
Tm if autocatalysis starts accidentally in an arbitrary cell. VNa = 4 x 10* ML, On the basis of the proximity of the
In the cause of further analysis, we followed the behavior of corresponding values offQ)min and Tp,
an individual separate stochastic oscillator and the variation in
the oscillation period in response to a decrease in the lattice (Tdmin= Ty (21)
size up toN x N = 2 x 2 at extremely high values &ty (kx
= ky = kz = key), above which the oscillation period is no longer we may assume that the oscillation frequency multiplication
sensitive tokex. As mentioned above, for small-size lattices, originates from the stochastisity of individual microoscillators.
this requirement is satisfied with the proviso that> (1/t)max If autocatalytic multiplication of X particles starts in any of the
Figure 8 shows théhz[oscillation pattern foN x N =2 x 2 numerous MOs, this “triggers” all the rest MOs, though the
at kex = 1000 s1. With such a highkey, a 2 x 2 cell lattice value ofny in all these cellsMOs has not yet become as low
may be considered as a single stochastic oscillator because thas the criticalfy[J..
intercellular mass exchange rate is much higher than the rate To substantiate the above assumption, we obtained the
of chemical reactions. As may be seen in Figure 8, the distribution of a large number (more than 1000) of periods of
oscillations of individual MO are of stochastic type: a period oscillations over the values @f, (histogram) for the stochastic
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Figure 10. Histogram for an ensemble of 1100 periotisobtained

for the stochastic Oregonator with the basic set of constamts=.3

M andVNa = 4 x 10 Mfl; No = 22, kx = ky = kz = kex = 2500 sl
Along the abscissaxis, the middle values of the 5-s-intervals are plotted
(the summation of the number of periods were done over 5-s-intervals).

Oregonator simulated on a2 2 cell lattice at the extremely
high mass exchange constants. The results for the cagdlpf
=4 x 10* M~1anda = 0.3 M are presented in Figure 10. The
histogram maximum falls exactly on the oscillation periog
41.7 s of the deterministic Oregonator (the value= 41.7 s
was obtained from the numeric solution of the ODE for the

Oregonator model with the corresponding parameters) and

agrees well with the averaged value [@f,0= 42.9 s. The
minimum values ofT, closely agree with the value &,
17.5 s forkex < ke when large lattices are used (see Figure
3A). The histogram (Figure 10) also shows that there are the
periods withT, < Ty,. A more thorough analysis, however,

indicates that the emergence of these periods relates to the

extremely low values of oscillation amplitudes (small peaklets)
which only slightly exceed the background level (level of noise).

Vanag
TABLE 7: Dependence ofT on kx, ky, and kz2
kx, st ky, st kz, st T,s
1.6 1.6 32 17.4£ 0.8
1.6 1.6 1.6 16.4 0.8
1.6 5 1.6 18.8: 0.7
5 1.6 1.6 28.8t 0.3
5 5 5 30.1+ 0.3
5 5 32 29.3t 0.9

@ A basic set of the Oregonator constants was usexl=at0.3 M.
PCA parametersNy = 32 x 32, V:Na = 4 x 10* M™%, StepDif=
0.01 s,StepMix= 0.05 s,Lev = 3.
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Figure 11. The dependencies of the oscillation periddon the

macromixing constarknmix for the stochastic Oregonator with the basic

set of constants ara@l= 0.3 M. PCA parameterster = 3,V.Na = 4

x 10* M1, the value ofStepMixis the variable for curve lk; = kx

= ky = kex = 10 s'L. For curves 2 and FHtepMix= 0.05 s; for curve

2,kz =32 5%, kx = ky = kex = kmix; for curve 3,kx = ky = kz = kex

ix-
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the constankqmix is plotted, which equalg&x = ky = kex (see
Figure 1) for the parameters of the PCA at which curves 2 and

These small peaklets are probably unable to stimulate autoca-3 are obtained. According to Figure 11, for = ky = kz =

talysis in the whole system when a large number of cells are
involved.

All the data presented in Figures-20 allow us to character-
ize the discovered effect as the bifurcation of oscillation
frequency multiplication in the system of a large number of
diffusionally coupled stochastic MOs at their intense stirring
and to state that this bifurcation is caused by internal fluctuations
of the system.

4.3. Connection between the Frequency-Multiplying
Bifurcation and the Main Kinetic Constants, i.e., kx, Ky, Kz,
kmix, and y;. Connection between the Bifurcation andky.

So far we changed the values kf = ky at kz = constant.
Thus, we are unable to conclude which one of the mass
exchange constantkx or ky, leads to the bifurcation of
frequency multiplication. To solve this problem, we conducted
computer experiments considering the following casesky(i)

= kz = constantky is variable and (iilkx = kz = constantky

is variable. It turned out that in the cases when the cong&tant
remained unchanged, the variations in the peTiadere slight,
and vice versa, when the constagt was a variable, the
variations in the period were pronounced. Table 7 presents
some results that justify that the observed bifurcation mainly
depends orkx.

The Case ofkx = ky = kz. We may conclude as well that
for such an important case s = ky = kz = kex the oscillation
frequency multiplication may also be observed whien

kex, the oscillation period also shortens whek.y decreases.
At some critical poink (ke = 1.7 s'1), the rate of changes in
T, dT/dkey, decreases abruptly but does not reach zero, as in the
case of curve 2. The dependencies of maximum and minimum
values offyJand hz[0on kex and the dependencies aiY]
and [X on kex are analogous to the dependencies presented
in Figures 5 and 6 and are given in the Supporting Information
in Figures 11S and 12S.

Independence of the Bifurcation from Stirring Rate. Let
us consider now curve 1 in Figure 11. As was shown in section
2, the rate of macromixing characterized by the conskant
depends on the mass exchange constaptand on the
convection intensity determined by valusepMixandLev. All
of the above computer experiments on the detection of the
frequency-multiplying bifurcation were conducted at high
stirring intensity, when the macromixing rate is limited by the
micromixing rate andknyix = kex. We checked the behavior of
the system in the opposite case, when macromixing is limited
by convection an#fix < kex. In these experiments, the constant
kmix was diminished by means of a growth in the time step
StepMix (see Figure 1B). The results of these experiments
presented by curve 1 in Figure 11 show that the peFicemains
practically unchanged ds,ix decreases d.x = constant. On
the basis of the data from Figure 11, we may conclude that the
bifurcation of oscillation frequency multiplication depends on
the mass exchange constigtand does not depend (or barely

decreases. The results of the computer experiments for this caselepends) on the stirring rate (at least for the basic set of the

are presented by curve 3 in Figure 11. Curve 2 in Figure 11 is

Oregonator constants).

the reference curve with the same model parameters as in the Dependence of the Bifurcation on the Chemical Reaction

aforementioned case whegy = ky are variables andt; is
constant. Unlike Figure 3, in Figure 11 along the abscésss,

Rate Constants. In conclusion let us consider briefly how some
constants of the Oregonator model may affect the frequency-
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Figure 12. The dependencies of the oscillation peribdn the mass

exchange constaky in the stochastic Oregonator modebat 0.3 M

and various values of the constdat () k; = 0.2 Ms™, (W) k; =

0.05 Mt s™%. The remaining constants of the Oregonator are as in the
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s 1, kx = ky, StepDif= 0.01 s forkx < 30 s, StepDif= 0.001 s for

kx > 30 s’1, StepMix= 0.05 s,Lev = 3.

multiplying bifurcation. From the experiments and the theory
on the stirring effects in the BZ reactidh2!we know that the
slower the inhibitor concentration approaches the critical point
[Yler, the more noticeable the fluctuations affect macrosystem
dynamics. Since the bifurcation discovered in this work is of
fluctuation nature, the ratid./Tn, is expected to increase on
condition that the rate of [Y] approach to [¥]slows down.
This rate is controlled by the constdat A decrease if; does

not change the position of the Hopf bifurcation point on the
bifurcation diagram, but the oscillation period increases at the
expense of R1 reaction slowing down, and the relaxation
waveform of the oscillations becomes more pronounced (i.e.,
the ratio of time intervals at which [Z] grows rapidly and

J. Phys. Chem. A, Vol. 101, No. 38, 1997083

dampened and they oscillate in-phase with the most probable
frequency=Ty~1. Attoo low of a rate of mass exchange, when
kex < vi, the coupling between MOs disappears and chaos
follows; no oscillations of the entire system are observed in
this case. The entire coupled system exhibits the largest
sensitivity to the coupling strength at the critical pdigtwhere

the mass exchange constégthas the same order of magnitude
as the constangs (ys = kis[A]) of the activator exponential
growth.

There exists a similarity between the experimentally ob-
served* and theoretically found bifurcation of frequency
multiplication. In experiment? the spontaneous changes in the
frequency of the initial oscillations in the AOT-BZ reaction
increase with micellar radius decrease. A spontaneous increase
in oscillation frequency may occur due to the structural
transformations of microemulsion during the reaction or due to
a change in the rates of chemical reactions when bromine is
stored in the organic phase. In the experiments on stirring
effects?! we showed that an increase in jBresults in a slower
approach of [Br] to the critical concentration [Bil¢r and, hence,
an increase in the relaxation wave form of oscillations. The
latter, as we have shown, enlarges the changes in oscillation
frequency as a result of the frequency-multiplying bifurcation.
A real AOT-BZ reaction, naturally, is more complex than the
system of coupled stochastic Oregonators and there may exist
another reasons leading to spontaneous multiplication of oscil-
lation frequency.

We have not considered yet such problems as (i) the effect
of polydispersity and the fractal nature of the micellar clusters
on the bifurcation of frequency multiplication, (ii) the behavior
of the stochastic Oregonator\&Na — 0 andNy — oo, (iii) the
behavior of the system &.x — 0, and (iv) the simulation of
more complex BZ reaction models and peculiarities of the AOT-
BZ reaction.

Quite a separate class of problems emerges when the cells

decreases slowly within a single period is increased). Figure of the PCA lattice are not stirred. According to our preliminary

12 presents the dependencied a@in ky for two different values
of k. Whenk; decreases by a factor of 4 (from 0.2 1 to
0.05 M1s71), the ratioT./T, becomes nearly twice as much,
growing from 2 to 3.8, while the critical constalt (ke; = 2.8
s71) remains unchanged.

5. Conclusion

With the theoretical method of the PCA, the bifurcation of

results, either the stationary Turing structures (described in detail
by Becker and FieRf) or the synchronous oscillations of all
coupled stochastic MOs may arise under the oscillatory regime
of the Oregonator model in the unstirred distributed system.
The transition from the synchronous oscillations to the stationary
structures occurs as soon as the constikatandky of mass
exchange decrease. Thus, the PCA method applied to the
stochastic distributed Oregonator makes it possible to study the
competition between the Hopf bifurcation and Turing bifurcation

oscillation frequency multiplication has been found at a decreasejn the presence of fluctuations. It is interesting to note that if
in the constant of mass exchange (or coupling strength) betweeryne turns on the “stirring” procedure when the Turing structures

a large number of identical stochastic microoscillata@sego-
nators under their turbulent stirring. Either with a decrease in
the coupling strength between MOs or with the reduction of
the spatial size of M¥*MO, the oscillation frequency of the

are formed, the oscillations with the multiplied frequen€y)(*

appear in the assembly of coupled stochastic Oregonators.
The effect of oscillation frequency multiplication observed

in this work may probably be met not only in the assembly of

entire system of coupled MOs starts to grow, and at some ctitical stqchastic Oregonators but also in any other large assembly of
point, the rate of this growth changes in a threshold manner asstochastic oscillators. In this case, analogous effects may
in the nonequilibrium phase transitions or in the equilibrium emerge in such assemblies of excitable cells as brain neurons
phase transitions of the second order. At high mass exchangeyr heart cells because the activity of isolated excitable cells (for

constants and at rather large sizes of the whole system, whennstance, neurof§ is similar to the operation of a stochastic
the productNoV. is large, the oscillation frequency of the system gggillator.

of coupled stochastic MOs coincides with the oscillation
frequency of the deterministic macrooscillator. Acknowledgment. | am grateful to L. S. Vanag for the

A mechanism for the oscillation frequency multiplication critical reading of the manuscript. The research described in
related to the stochastisity of a MO has been suggested.this publication was supported in part by the Russian Foundation
Frequency multiplication occurs when the coupling strength for Basic Research through Grant 97-03-32436a.
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